RSTS PROFESSIONAL

Volume 2, Number 2

May/June 1980

$75%/issue, $20°°/year

o]

TSPROFESSlONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSlzo

OHdS.LSHTV

PROFESSIONAL

dSLSHTVNOISST40HdSLSHTVNOISSTI0HdS LSHTVNOISS340HdSLSHTVNOISSIA0HdS LSHTVYNOI

OFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRST

SS340HdS.LSHTVNOISSAA0HdS.LSHTYNOISS3d

o

INSIDE:

New User’s Manual for RSTS/E
Canadian DECUS

Prescription for an Old Program

o O o Od

Word Processing with DEC _
Computers - Hints & Kinks

Ll

Conversion to VAX (“native
mode’’) Basic

RSTS Disk Optimization
Please Ignore This Notice

MUMPS as a Language

o o o 0O

DECUS PLUS or,
Independence for the
RSTS Community

a

? Why TECO ?

O ? How TECO ?
Structured Programming in TECO

0 An Open Letter to
the RSTS Community

O Basic-Plus as an Environment for
the Implementation of the Naive
User Interface in a High-Level
Programming Language

O A RSTS/E to VAX/VMS Conversion

O 1/0 From MACRO —
Quickly & Easily!

[0 A Basic-Plus-2 Programmer’s Guide
to Resident Libraries



Two
Distinguished
Products for
PDP-11

Users...

INTAC"
MAPS"

Ross Systems, with over seven years of
proven capability, now offers these two

Financial
Modeling

Interactive

Data Base Management

INTAC is a new concept for data
storage and retrieval that features
an easy-to-use question and
answer format, built-in edit rules,
multi-key ISAM data access, inter-
active inquiry and a unique report

MAPS, recognized worldwide for
over five years as a leader in finan-
cial modeling and reporting, is
used to construct budgets, finan-
cial forecasts, consolidations and
“what if”” analyses.

products to current and prospective

PDP-11 users. INTAC and MAPS enable

business managers to produce instant

reports themselves, and relieve DP man-

agers from the pressures of special
requests.

Ross Systems offers these management
tools on our timesharing service, for
license on existing computers and as
part of a complete, in-house timesharing
installation.

generator.

Call us collect for more information.

/0SS SYSIEms

/rncorporared

1900 Embarcadero Road, Suite 208, Palo Alto, CA 94303 « (415) 856-1100 ¢ Other offices in San Francisco and Los Angeles



May/June 1980 page 1
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

If youre looking for speed,
a fast track and reliability,
enter the Southern 600.

Enter the 600 line-per-minute band printer that
costs less than somebody else’s 300 Ipm printer

The Southern Systems 600 Ipm band printer is
about as goed as you are going to get.

We are the only company that designs,
manufactures and services every printing system with
a Southern Systems name on it. Our
computer-to-printer interfacing covers the
full PDP’ line, including VAX 11/780,
DECsystems 10" and 20; as well as
Hewlett-Packard, T1, Perkin-Elmer,
Burroughs, Data General and others,

You get the most reliable hard copy m
output at the lowest cost of ownership on
the market. Parallel or sexrial.

We have the technology and manufacturing
skills that make our reliability, economy, prompt
delivery and service a reality.

Southern Systems. We're leading the pack.

CALL TOLL-FREE: 800-327-6929

SOUTHERN SYSTEMS,

INCORPORATED

Intracoastal Building 3000 N.E. 30th Place
Fort Lauderdale, Florida 33306 - (305) 561-5226

O.K., Speedy, tell me about the following printer system(s): My computer is a

—
l
I |

4 : !
| 01 209 Ipf impactmatis My requirements are: immediate 3-6 months information only. l
| O the B series (300 or 600 Ipm band)

Name Title |

l 0 the 2200 series (300, 600, 900 Ipm drum) I
| O the 1200 series (600 to 1200 Ipm Chain Train) Company |
{ O the 2550 (1500 lpm charaband) Address I
| O Serial Interfacing City State Zip }
| !

O Parallel Interfacing Telephone ( )




page 2

RST'SPHOFE'SSIONALHSI’SPHOFESSIONALRSI‘SPROFBSIONALHSI‘SPROF!-ES!ONALRSTSPROFFSSIONALRmPROFBsIONAmmmOmIONAmmOFBSIONALIE]’SPROFESS]ONA[RSTSPHOFFSS!ONA[R

Ix CONGRESS, Jriy o :?;6‘

Cofie 1ot oS Declarafion s s e States of aterd

AMCOR feels an application development
tool using data base management structures
must also be designed to accommodate
change—the changes in your business.

Our combined DBMS and Application
Development System, AMBASE, embodies
this philosophy. With the use of AMBASE,
you realize a savings in development time of
50%-90%, and automatically both ease of
modification and maintenance are built into
your system. Providing for change today is
imperative to the management of your infor-
mation resource.

May/June 1980
STSPROFESSIONALRSTSP

There is More to
Information
Management. . .

Ambase® is
Documented
Proof

Just as The Declaration of
Independence was designed to
accommodate years of change. ..

State-of-the-art sophistication and human
engineering have never been so uniquely
merged into a Data Base Management
System.

For complete information on AMBASE, or
any of AMCOR’s complete line of DATA
BASE ORIENTED applications, give us a call
or use the coupon provided below.

®

1900 PLANTSIDE DRIVE ° LOUISVILLE, KY. 40299 ¢ 502/491-9820

SOFTWARE FOR DEC*/RSTS SYSTEMS

————————— e e
= Please forward information on the following systems:
l e

|

} O AMBASE

| ﬁ O Accounts Receivable

} O Accounts Payable

| 4 O GL/Financial Mgt. (AMFACS)

| O Payroll

| O Order Processing

I O Inventory Control

| 1900 PLANTSIDE DRIVE [J Sales Analysis

I LOUISVILLE, KY. 40299

L 502/491-9820

Name

Company
Address

City. State Zip

Telephone

Computer Type Operating System

—— e T

*DEC is a TRADEMARK of Digital Equipment Corp.



May/June 1980

Contents

NEW USER'S MANUAL for RSTS/E ... . i et e et 8
Cathy Galfo
The First Lady of New Users, Cathy lets us in on some of the secrets.

CANADIAN DECUS, TOronto . .......couuniiimiiiiiiit it eiinneeeannnnns 13

Carl Marbach
Our aviator and editor travels to the frozen North.

PRESCRIPTION FOR AN OLD PROGRAM . ... ..ottt ittt ittt iiniannnnn, 14
Rob Davidson
Experienced author of Auerbach reports and President of Timesharing Consultants of Pennsylvania. This ex-
IBM'er knows how to make RSTS work for you.

WORD PROCESSING with DEC COMPUTERS — Hintsand Kinks .................. 19
Lawrence Eisenberg
A lawyer, Dibol programmer and expert in Word Processing?? We found him! If you are into word processing
(and we are, with a large portion of this journal produced using DPD's WORD-11 on RSTS), this is for you.

CONVERSION TO VAX (“native mode”) BASIC ...............ccoiiiiiiiinnnnnnnn. 26
Kenneth Ross
With 3 11/70’s and now a VAX, maybe he’s doing something right!

RSTS DISK OPTIMIZATION ¢ oc oo wv 6w eismms o s wia o s s s o tivsa aiss oo o608 6 ws o 5k 6 wiss 28

Mike Dash
Mike first shocked the RSTS world with the revelation that it mattered how your disks were structured. He
updates how you can do that now.

PLEASE IGNORE THIS NOTICE
Joel Schwartz, M.D.
If only Elinor would stop filling our mailbox with praise we would have time to answer the many other letters.
Don’'t miss the first picture of The Doctor without his mask!

MUMPS asa LANQUAGE .. ..ottt ittt iiiiie i innneeananns 33
Peter Clark
Our "Mumps Man", Peter the old timer, tells us how he did it on the PDP-10.

DECUS PLUS or, Independence for the RSTS Community ........................ 35
Howie Brown and Monica Collins
The new independent RSTS LUG of Southern New England is alive and well thanks to these two refreshing people.

A oe(o)r i m e g A A oo o 56 000 GO0 BRI R C R T e o B R N ek 36
Carl B. Marbach
? How TECO ? - Structured Programmingin TECO .......................c...... 37

Jacquie Stafsudd
They do more in Malibu than surf. They write TECO programs — the right way. Learn how here.

AN OPEN LETTER TO THE RSTSCOMMUNITY .......... ... .., 45

Jerry Kiestler
Jerry wants input from YOU!

Basic-Plus as an Environment for the Implementation of the Naive User Interface
in a High-Level Programming Language ...................cooiiiiiiiiinnnn..n. 46

Tony Kobine and Ed Taylor
The American contingent of FINAR tells us how they did it.

ARSTS/E to VAX/VMS CONVErSION . .......ccivitmnneetninneennennennnnanennns 54
Susan Blount Duff and Jeffrey S. Jalbert
A completed RSTS to VAX conversion.

170 FROM MACRO — Quickly and Easily! ................coiiiiiiiiiiiiiin.., 60
Bob Meyer
Our “MACRO MAN", Bob will tell you how it can be done.

A BASIC-PLUS-2 PROGRAMMER'S GUIDE TO RESIDENT LIBRARIES ............... 62
Al Cini

If you didn't know who knows what, read this and you'll know more. Resident Libraries are the single most
important extension to RSTS that we are likely to see for a long time. Our uses of them are just beginning.

Editorial ........................... 4 DearRSTSMAN ................... 18

Letters to the RSTSPro... .......... 6 Questions and Answers

Book Review .............c.cuuun.. 17 Classified ......................... 74
“A Guide to Programming in Basic-Plus® List of Advertisers ................. 74

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

page 3
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

In NextIssue...
August/September 1980

B In-Depth String Handling
Analysis

B More Basic-Plus-2
B More Performance
B Trouble with V7.0!
B How & Why TECO?
B New Programs

The following items were to appear in
this issue but space would not allow it.
However, they will appear next issue.

B How to Add ON/IN Memory

B Continuing RSTS
Communications:
Multiplexers and Modems

B More Disk Anatomy

B The World of 300
MByte Disks

B Site Profile: The RSTS
Credit Union System

B More. ..

The RSTS Professional Magazine, June 1,
1980, Vol. 2, No. 2. Published quarterly.
Single copy price $7.50, %20.00 per year.
Published by M Systems Inc., 753 Johns
Lane, Ambler, Pa. 19002, telephone (215)
542-7008. Send all correspondence and
change of address to: Box 361, Ft. Wash-
ington, Pa. 19034. Application to mail at
second class postage rates pending at
Ambler, Pa. 19002. Copyright 1980 by
M Systems, Inc. No part of this publica-
tion may be reproduced in any form
without written permission from the
publisher.




page 4

May/June 1980

RSTSPROFESSIONALRSTSPROFESSIONALRST:! SPROFESSIONALRSTSPROFESSIONALRST: SPROFFSSIONALRS'I‘SPROFFSSIONALRSI'SPROFFSSIONALHSI'SPRDFFSSIONALRSTSPROFESSIONALRSTSPROFE.SSIONALRSTSPROFFSSIONALRSTSP

RSTS PROFESSIONAL"

From the editors...

I'm confused by what | hear around the
DECUS meetings about funding the various
LUGs and SIGs. For the uninitiated, Special
Interest Groups (SIG) and Local User
Groups (LUG) form the heart and soul of
DECUS. When you attend a DECUS meeting,
the RSTS SIG has set up the program within
the meeting for you. They do this with lots
of unsung hard work and planning and they
do it very well. The RSTS PROFESSIONAL
has attended DECUS meetings in the U.S.
and Canada this year and we can attest to
the sKill of the SIG planners. The Local User
Groups (LUG ...) vary from sedentary to
dynamic and have between 1 and 500
members.

Now, How do these groups exist within
DECUS? . We don't pay dues to DECUS: DEC,
we presume supports it. Then DECUS sup-
ports the SIGS and the LUGS. This support is
changing. The SIGS and LUGS are going to
be responsible for more of their own fund-
ing. How can this work? Let me give you an
example of a successful LUG.

The New York Metro Lug has a member-
ship in excess of 300 and meets once a
month for dinner in The Big Apple complete
with after-dinner speakers and lots of good
company. They have a newsletter that is
published once a month by their leader,
John Runyon, called Computers-R-Digital.
They fund themselves by dues, dinners, and
other innovative ways. They are a viable,
valuable and interesting group (if you are in
New Jersey, New York, or Connecticut, let
them know and join the LUG: send your
name to us if you can't find them). John
does lots of work from home on his HOME
Computer running RT-11 (he emulates
RSTS).

There is an independent LUG forming in
New England (see their article, “DECUS-
PLUS or Independence for the RSTS Com-
munity”). They presumably will not be tied
to any DECUS rules or limitations. They
won't have DECUS support (mailing lists,
etc.). If all LUGS are required to pay, then
maybe they won't need or want DECUS
Jjurisdiction.

How does your local LUG stack up?
Poorly, I'll bet. It's going to get worse! How
in the world do you fund a non-commercial,
non-profit venture like a LUG. If that's a
problem, think of our SIG with its 8500
estimated members; how will that be
funded?

I 'am a member of the TECO SIG. There is
a neat little card that has all the TECO
commands on it and can be a big help to
TECO programmiers. It is out of date, needs
revision and is being sold at $1.00 each by
DEC. The RSTS PROFESSIONAL offered to
print new cards (up to date, of course) and
sell them with all profits split between us
(we'll make the investment and do the
work) and the SIG. Does anyone hear me?
Or are we too commercial?

What will become of the substructure of
DECUS without monetary support? Should
the SIGS charge dues? Should DECUS
charge dues? Should the LUGS charge

DUES? I'm more confused than ever!!
Does DECUS owe us an explanation? It is
our user group ... isn't it?

Carl B. Marbach, Editor

I just got back from DECUS Chicago. I have
expended lots of energy (mental and
physical) over five years trying to make
DECUS into something it isn't. What is
DECUS? It's DEC's trade show. They own it
lock, stock and barrel and that's that. Some-
one wise once said, “It's much easier toride
the horse in the direction he's going.” This
magazine was created from that wisdom.
DECUS is for talking with DEC. The RSTS
Professional is for talking to everyone.
DECUS is a context designed by DEC to
achieve their corporate aims. These include
user feedback to developers, wish lists, and
other pulse-taking techniques. It is a privi-
ledged, non-public forum where manufac-
turer talks directly to customer in a safe
environment. It is highly commercial, but
only for DEC. It survives only because the
user benefits enough from the interchange
that he or she is willing to pay for the
session. For the last several meetings |
have felt a growing dissatisfaction with the
context of the meetings. DEC is always very
unwiliing to talk about the next release so
soon after a new release. With no release-
related gossip to distract us, we were left
with the choice of say-nothing product pan-
els or hearing for the third or fourth time
that RSTS has a large future in being small.
If this doesn't change, users will stop com-
ing and DEC will lose a great thing. I person-
ally feel that DECUS is excellent and worth
having. I am involved in the RSTS SIG steer-
ing committee and am willing to do my part
to improve the next meeting in San Diego.
Now that I am clear about DECUS — what it
is and isn't, | can make a list of all the things
DECUS isn't now and may never be, and see
what we can do to help some of them
happen. ’

Some things DECUS isn't:

- A free forum

- A place to see non-DEC alternatives
- A trade show

- A place to sell magazines

Things DECUS should be and has not
been lately:

- A two-way conversation with DEC

- A forum for top-quality user papers

This magazine already is many of the
both lists, but it is only a one-way conversa-
tion with DEC.

There are a number 6f successful NON-
DECUS lug's in both the U.S. and Canada.
They, like this publication, are successful
because they do the things that DECUS
can't or won't do.

I hope to gather a bunch of these inde-
pendents together for a meeting soon and
see what we can do together.

R.D. Mallery, Editor

Editors
R.D. Mallery
Carl B. Marbach

Editorial Assistants
Peg Leiby
Helen Marbach
Bonnie Staubersand

Copy Editors
Marty Grossman
Peg T. Grossman

Contributors
Howie Brown
Al Cini
Peter Clark
Monica Collins
Mike Dash
Rob Davidson
Susan Blount Duff
Lawrence H. Eisenberg
Cathy Galfo
Jeffrey S. Jalbert
Jerry Kiestler
Tony Kobine
Bob Meyer
Kenneth Ross
Joel Schwartz, M.D.
Jacquie Stafsudd
Ed Taylor
Photographic Consultant
Arthur Rosenberg
Design & Production
Grossman Graphics

Editorial Information: We will consider for publi-
cation all submitted manuscripts and photo-
graphs, and welcome your articles, photographs
and suggestions. All material will be treated
with care, although we cannot be responsible
for loss or damage. (Any payment for use of
material will be made only upon publication.)

*This publication is not promoted. not authorized,
and is not in any way affiliated with Digital Equip-
ment Corporation. Material presented in this
publication in no way reflects specifications or
policies of Digital Equipment Corporation. All
materials presented are believed accurate, but
we cannot assume responsibility for their accuracy
or application.



May/June 1980 page 5
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

11/70 or VAX, you expect it to wotk. If it comes from
Nordata You can be sure it will. If it comes from
anywhere else . . . well, there’s no telling. }

So what's so specxal about Nordata? The whole approach
We've been in this business a long time, both as a user and }
supplier. We know how frustrating it is to have the whole"
system go down because of a rotten disk. We didn't like it when it
happened to us, and we don’t want it to happen to you. That's why we m
offer the industry’s longest and most rigorous burn in. No disk drive D
— 300,200 or 80 megabytes — leaves our plant until it's burned in and'
error free for at least a week. And when it leaves we come with it. We do
the installation, so we know you're up and running before we let you go
And then we back the whole system up with nationwide service.

i
At Nordata we take the beating, so you don’t have to. So call or write us 1f . WEHW
you re tired ofbemg burned. -pecarprace d of Digttal E Corporation

w hen you order a disk drive for your DEC* PDP-11,

il N s,

Nordata. Your one stop
DEC* shop for peripherals

NORDATA

4433 27TH AVENUE WEST
SEATTLE, WASHINGTON 98199
(206) 282-1170




page 6

RSI'SPROFFSSIONALRS'ISPROFFSSIONALRSI’SPROFBSlONAUBTSPROFBSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPHOFESSIONALRSTSPROFBSIONALRSFSPROFBSIDNALRSTSPROFESSIONA

LETTERS to the RSTS Pro. ..

Dear Editors:

Please consider the accompanying arti-
cle for publication. We expect it to be of
considerable immediate interest to your
readers. Thanks. Sincerely,

Howie Brown & Monica Collins
SE New England RSTS Users Group
Pawtucket, R.I.

We are inreceipt of your article, “DECUS-
PLUS or, Independence for the RSTS
COMMUNITY” and would like to use it in
the May-June issue of THE RSTS
PROFESSIONAL.

Thank you for submitting it to us. We
are always looking for comments and opin-
ions from the RSTS community.

(See Mr. Brown and Ms. Collins’ article,
“DECUS-PLUS . ..”, in this issue.)

Dear Sir:

Congratulations on your new publica-
tion. I like it, the boss likes it, and so do the
programmers. How about an article on
measuring system performance. We're run-
ning version 7.0 of RSTS and have tried
using the programs STATUS and
QSTATS.

The output from these two are not very
compatible and they seem somewhat at
odds. I have tried DEC, DECUS and other
users for information on QSTATS, but to
no avail.

Perhaps you know of someone who
knows about QSTATS, and would be will-
ing to give me his name. With the advent of
data caching it would be helpful to get
some statistics on how well it performs.

Sincerely,
Wendell Peterson
United Industry, Inc.

Thank you, Wendell. We'll try to help you
soon. Stay tuned!

Dear Sirs,

Enclosed is a subscription application
and a check for $20.00 in payment for a
year’s subscription to your journal. I have
just finished reading the November/
December issue (borrowed from a col-
league) and wish to congratulate you on
such a fine publication, long needed in the
RSTS community. I would like to pur-
chase a back copy of all issues to present,
if that is possible. Please provide a list of
available back issues and cost.

Thank you,
Edward T. Keegan
New Haven, Conn.

Back issues of the RSTS PROFES-
SIONAL are now available. Information
is provided on the subscription cards and
throughout this issue.

Dear Dave,

Enclosed is a copy of an open letter to
RSTS users which I would like for you to
consider publishing in the next edition of the
RSTS Professional. It concerns the Spool-
ing Package Task Force which was created
at the Chicago DECUS Symposia.

I would also be interested in any input
you might have concerning our project.

Sincerely,

Jerry Kiestler

The University of Tenn. at Martin
Computer Center, Martin, TN 38238

See Mr. Kiestler’s Open Letter in this issue.

Dear Mr. Marbach:

I received your letter, concerning adver-
tising in your publication, with a great deal
of interest. I received the first 2 copies of
the journal and am very impressed with the
high level of professionalism they exhibit.

I have sent material for an ad in this
issue.

Cordially,
Bobby E. Sharp, General Manager
Plycom services, inc.

We thank Mr. Sharp for his positive com-
ments and support.

Gentlemen:

We shall be happy to subscribe to your
magazine just as soon as you bring sub-
scription prices down to a reasonable level.

Sincerely,
John Muller, Data Proc Mgr
Zipatone, Inc.

We’re sorry, John, but you’ll have to keep
on reading a borrowed copy of the RSTS
Professional. There’s no such thing as a
free lunch.

DO YOU REMEMBER THIS?

(Photo contest, RSTS
Professional, Vol. 2,
No. 1, p. 64.)

A RSTS T-shirt is on
its way to the readers
listed below who have
correctly identified the
above photo as a
BINARY CLOCK
which “says” 3:51:14. We thank all who partici-
pated for making this feature fun.

Photo contests will appear in the RSTS PRO-
FESSIONAL occasionally and readers will have
until the last day of the second month of publica-
tion to submit their answers (ex.: February/March
1980 readers will be required to have their answers
postmarked no later than March 31 of that year).

We may, from time to time, limit the number of
correct answers eligible to receive prizes (ex.: the
first 10, etc.).

Here are the entries in order of receipt:

. continued on page 31

May/June 1980
LRSTSPROFESSIONALRSTSP

RSTS
USERS:

For the best “system solution”
to your disk storage needs,
contact the System Industries
office nearest you.

Atlanta

3355 Lenox Rd. NE, Suite 750
Atlanta GA 30326

(404) 231-3640

Boston

385 Elliott Street

Newton Upper Falls MA 02164
(617) 332-3220

Chicago

999 Plaza Drive, Suite 400
Schaumburg IL 60195
(312) 843-3707

Cincinnati

11750 Chesterdale Rd., Suite 2702
Cincinnati OH 45246

(513) 7710075 and (513) 874-5503

Houston

11777 Katy Freeway
North Building, Suite 335
Houston TX 77079

(713) 497-7224

Los Angeles

2049 Century Park East, Suite 3050
Los Angeles CA 90067

(213) 557-0384

New Jersey

K & J Engineering (Representative)
P. O. Box 1152

Wayne NJ 07470

(201) 839-8650

New York

200 Park Avenue, Suite 303 East
New York NY 10017

(212) 9530315

K & J Engineering (Representative)
50 Knightsbridge Road

Greatneck NY 11021

(516) 482-6082

Orange County

18001 Skypark So., Suite B
Irvine CA 92714

(714) 7546555

Rhode Island

57 Kilvert Street
Warwick Rl 02886
(401) 739-8070

Washington, DC

7927 Jones Branch Dr., Suite 413
McLean VA 22102

(703) 7349700

System/{{(/lndustries

an equal opportunity employer

525 Oakmead Parkway, P.O. Box 9025
Sunnyvale, CA 94086
(408) 732-1650, Telex: 346-459



May/June 1980 page 7
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

F&C Sales in Los Angeles supplies
precision parts to large OEMs. When it
had to expand minicomputer disk stor-
age to handle a growing 80,000 item in-

ventory, it turned to System Industries
—the leading independent disk storage
system manufacturer.
NUTS & “We couldn’t wait six months for
the minicomputer manufacturer to de- (//
liver,” F&C President Mel Goldberg 7, .
said. “‘System Industries took just two SYSteml""” IndUSt"es
weeks, and had the system up and run-
ning the day they delivered. The price
was very competitive, and they even
found a buyer for the old equipment.”
Inventory control Contact System Industries today to
learn how we can help you get down
takes more than to the nuts & bolts of minicomputer
a computer. disk storage.
In the U.S.: 525 Oakmead Parkway, P.O. Box
9025, Sunnyvale, CA 94086, (408) 732-1650,
Telex 346-459. In Europe: System Industries
U.K., System House, Guildford Road, Woking,
Surrey, GU22 7QQ, England, (048 62) 5077,
Telex 859124.




page 8 . May/June 1980
RSTSPROFF_SSIONALRSTSPROFFSSIONALRST‘SPROH-KSIONALRSTSPROFFSSIONALRSTSPROFESSIONALRSISPROFESSIONALRSI‘SPROWSSIONALRSI‘SPROFBSIONALRSTSPROFFSSIONALRSTSPROFESSIONAIRSI‘SPROFESSIONALR?T'SP

Due to time and space limitations, Chapters Three and Four of Cathy’s article will be continued in the next issue of the RSTS Professional,
August/September. This action was taken to avoid cutting any portion of this very useful manual.

NEW USER’S MANUAL
FOR RSTS/E

By C. Galfo

ACKNOWLEDGEMENTS

I would like to thank all of the people who encouraged me on this project and | hope they will be gratified by
the result. My only regret is the small amount of time I had to spend on this manual, which continually forced me
to narrow my choice of topics. Barry Gershenfeld, my right hand and brain at work, did an excellent hardware
overview in Chapter One — thanks Gershe! For your comments, etc., our address is University of Virginia, Division
of Biomedical Engineering, Box 377 Medical Center, Charlottsville, VA 22908.

PREFACE

This manual is written for system managers and system programmers new to the RSTS/E operating system and the
PDP-11 family of minicomputers. The real system manuals, though considered “pocket guides” compared to non-DEC
manuals, currently consist of a three foot mountain of information not cross-referenced between volumes. As a result,
it is often difficult to find answers to questions posed by new users. In an effort to make the task of learning easier, |
propose a more relaxed approach offering common sense, problem-solving techniques, and humor. What follows is a
loose formalization of working experience compiled over several years and from many sources. The author does not
wish to be held accountable for technical information appearing in this document, though praise, suggestions, and
questions are encouraged.

INTRODUCTION
What is a system manager?

If you are a newcomer to DEC computer systems, then the term “system manager” will probably be
unfamiliar to you. The titles of “system programmer" and “application programmer” are well-known throughout
the industry, but, as | am learning in my job search, the non-DEC world does not understand my current function.
Attempts have been made to pigeon-hole me as “a four year BASIC-PLUS programmer”, who has, therefore, not
used a “hard" language and who has, as a consequence, no value in the marketplace. I resent that description, and
am fighting for the right to use those managerial skills | have had to have to make my systemreliable and efficient.
Here is, from my resume, a definition of a system manager’s job: “responsible for the daily administration of PDP
11/70 mini-computer running twenty-four hours a day, seven days a week, year-round, . . . Duties include the tailoring
and maintenance of system programs, operating system conversions, data base management, and the supervision and
training of software engineers, programmers, and data entry personnel. Consult with users, coordinate user activities,
and produce user programs and manuals . . .". In the non-DEC world the above would represent a mythical cross
between the jobs of computer operations manager and DP manager. .

The typical route to the top is an abrupt promotion from programmer (taking orders) to system manager
(giving orders), a switch which requires a great mental change. The purpose of this manual is to remove some of
the fear of new responsibilities, by presenting lessons from collective experience. Hopefully, your work will be made
more enjoyable in the end.

A Not-So-New User

Barry Gershenfeld, author of TAPE,
RSTS Prefessional, Vol. 2, #1, presented
some of this material at Spring

1980 U.S. DECUS.




May/June 1980

page 9

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

Chapter One
Hardware for System Managers

In this chapter [ will attempt to familiarize you with the
physical parts of your computer and how they are put together.
Perhaps you have looked inside the cabinet and wondered at all
the seemingly extra boxes and all those wires which look more
like ribbons than cables. You will not become a hardware
expert, but hopefully you will learn enough that you can refer to
your device manuals for detailed information, or talk some-
what intelligently to your hardware service rep. So let's exam-
ine the insides of your machine, working from the end of the
UNIBUS back to the central processor unit.

UNIBUS. The UNIBUS (DEC trademark) forms the back-
bone of any PDP-11 computer system. It constitutes a 56 wire
party line on which any device of the system can talk to any
other device. The ribbon cables interconnect each device from
one to the next. Inside each device, the UNIBUS takes the form
of a backplane into which the various circuit boards are
plugged. Eighteen of the bus lines carry address information;
another 16 lines are for the data. The rest of thelines are used
for synchronization, handshaking, interrupts, and initialization
signals.

Bootstrap Terminator. Electrical signals travel at the
speed of light down the bus and will bounce right back when
they come to the end of the cable. For this reason, a terminator
card is placed at the last position of the UNIBUS to soak up any
echoes that will try to come back and foul up things. DEC also
locates the bootstrap program on this card, since, as long as
you have to have this card, why not put something else useful
on it? The terminator is a bunch of resistors; the program s in
the form of serveral read-only memory chips. '

Devices. The central processor is, of course, the most
important device on the UNIBUS. Although the bus originates
in the CPU, the CPU does not have unique control of it. Any of
the other devices can “get on” and request data. This is the
reason for so many control signals.

The peripheral devices that can be added to the UNIBUS
include circuits to interface terminals, readers, punches, print-
ers, mass storage devices, instrumentation, arithmetic units,
and anything you might wish to build yourself. The 1976 Peri-
pherals Handbook lists some 64 devices.

Controllers. The controllers are devices which exist
between a physical device (what you see) and the interface
inside the computer. They are found on mass storage devices
that need lots of preprocessing of data. For instance, a disk
drive reads and writes bits on your disk pack, but the controller
groups them into words, counts the words as they are moved,
checks the parity, and even corrects the data if it can. It also
contains all the control and status registers that you see in an
ERRDIS printout. Controllers are also called formatters.
Simpler devices, such as terminal interfaces, have the registers
right on the interface card and do not process data.

Memory. Main memory is a read-write data storage
device which has one of the fastest access times of any of the
storage devices. “Fast” in this case is less than a millionth of a
second! This is where the action is. A good deal of CPU activity
involves reading and writing memory. Memory can be thought

of as a big data array occupying the lowest UNIBUS addresses,
starting from address 0. Anytime your job is active, it is stored
in main memory. Main memory takes the form of either mag-
netic core memory, or semiconductor (“MOS’) memory, the
latter being made entirely from integrated circuits. The
reason it's called MAIN memory is to distinguish it from hard-
ware cache memory, or from mass storage which is some-
times called disk memory.

Cache Memory. The memory found in top-of-the-line proc-
essors has an even faster access time thanks to cache memory,
an additional amount (1K) of high speed memory interfaced
with main memory. Anytime a word is read from memory the
hardware looks first to see if it's in the cache. If it is (a “hit"),
everything is fine and you have your data in 1/4 the time it
would have taken otherwise. If you “miss”, then you have to
get the word from main memory. Meanwhile the new word is
added to the cache, the reasoning being that a program spends
most of its time re-accessing data since it uses many loops. On
writes, the cache is updated to agree with memory if the old
word is presently in the cache. The hit rate is 80 to 90 percent,
giving an average access time improvement of 3 times the
speed of main memory alone.

Parity. In any system where the error rate is low, you can
add an extra bit to a data word (or byte) and be able to verify if
any bits change. For instance, main memory really is made up
of 9 bit bytes, or 18 bit words. You count the bits and if there
are an even number of them you set your extra bit to make the
number odd. If there are already an odd number, you leave this
bit off. This is called odd parity. You canjust as well reverse the
rules and shoot for an even number and then you have even
parity. The trick, you see, is that if you change any bits, includ-
ing the parity bit, you no longer have an odd number of bits, and
therefore, an error condition. If 2 bits change, then you are in
trouble, but if you have that kind of error rate, you're in trouble
anyway. Using more than one parity bit per word, you can even
tell which bit changed. This gives rise to an error correcting
code, which is used in ECC memory and on some disk drives.
Most of the devices on the system use some form of parity,
including magtapes, DECtapes, and terminals.

Memory Management. One of the most useful hardware
itemns a timesharing system could want is something to help it
keep track of all those jobs in memory. Actually it relieves the
operating system from having to worry about much of this
activity. Memory management features three main opera-
tions: relocation, segmentation, and protection. Relocation
allows the operating system (and the user) to treat each job as
though it occupied the lowest locations in memory. Arelocation
register offsets the memory address referenced so that the
actual location is then automatically computed from these two.
Indeed, the physical memory limit imposed by a 16 bit machine
is 32K words; through the use of relocation, up to 2 million
words can be addressed. Segmentation allows blocks of
memory to be divided up so that a job's work area does not
need to be contiguous, although through the use of relocation
registers it can be made to look contiguous. Protection takes
the form of several processor modes (User, Kernel, Supervi-
sor). Using the various modes, a job can be limited to reading
only its own allocated space. In addition, certain instructions
can be made privileged (so you can't execute a HALT, for
instance.)



page 10

May/June 1980

RSTSPROFF.SSIONALRST'SPROFF.SSIONALR?FSPROFESSIONALRSTSPROFFSSIONALRST‘SPROFFSSIONALRSTSPROFESSIONALRSTSPROFBSIONALRSI'SPROH‘BSIONALRS'I'SPROFESSIONAIRSTSPROFFSSIONALRSTSPROFESSIONALRSTSP

CPU's. The central processing unit is a whole book in
itself. Consequently, your computer should have come with a
PDP 11/7? Processor Handbook. I will briefly run through the
different procesors of the PDP-11 family.

The LSI-11 and LSI-11/23 processors are part of the 11 family
in that they make use of the Macro-11 instruction set,
however their bus is not a UNIBUS and therefore not
compatible with PDP-11 computers.

The 11/04 processor is the smallest CPU and its logic is all on
one circuit board. The memory is interfaced directly from
the UNIBUS.

The 11/34 has the added feature of memory management
and is the smallest processor which will support the
RSTS/E operating system. A 1KW memory cache can
optionally be added to this CPU.

The 11/45 has memory management, and in addition, features
a separate memory bus so that memory cycles can be
performed independent of UNIBUS cycles for added speed.

The 11/55 processor features two separate memory busses,
one for core and one for solid state memory.

The 11/60 has the features described so far, and besides its
unique front panel it also has microprogrammable instruc-
tions allowing you to add your own custom instructions to
the normal DEC instruction set. The 11/60 also features a
1K memory cache.

The 11/70 is the mainstay of the large minicomputers. It has
the separate memory bus, memory caching, and memory
management that its brothers have (but not the micropro-
grammable machine code of the 11/60), and while the
other machines could address up to 128K words of
memory, the 11/70's memory management permits
addressing of up to 2 million words! Furthermore, it has a
direct high speed interface to memory from certain mass
storage devices, which is explained next.

High Speed 1/0. The RH-70 interface is used typically to
interface magtapes and disk drives in the 11/70 CPU. It con-
nects the UNIBUS to the device contgoller as usual, but when
blocks of data are read or written they are transferred over a
separate bus called the MASSBUS, which is a direct connection
from the device controller to main memory. This is what helps
make the 11/70 the fastest computer of the PDP-11 family.

Chapter Two
The Language of RSTS/E

2.1 CONVERSATIONAL RSTS/E

I'm fond of quoting an infamous definition made by an old
friend, who, at the time of this remark, knew very little about
computers. When asked to define the term “software”, he
answered, “a person or persons who program a computer.”
The persistent confusion surrounding computer related termi-
nology inhibits communication not only between people repre-

senting different vendors, but among people using systems
from the same company. For RSTS/E there exists a large
collection of jargon, and an equal number of glossary type
terms. In order that we might better understand each other at
conventions and on the telephone, here are some candidates
for each category. Several “words" appear in both lists, so that
the reader can choose the definition that best fits the conver-
sation or audience.

RSTS/E Jargon

Sysslash-"C":  Where C is one or more letters. Request for a
SYSTAT.

Directoryslash- Where C is one or more letters, each separ-

“cr ated by a “slash”. Request for a directory of
an account.

Percent: Variable delimiter. Also denotes an integer.

FOO: DEC variable name that replaces DUMMY.

Pip-it: How to get a printout from the computer.

Queue-it- To send messages to batch processors.

up:

Spool-it: How to get a printout. Same as “pip-it", but
your KB is not tied up while printing is in
progress.

KB: Your terminal, “KB colon”, or someone elses,
as "KB ten".

Console: The terminal you never use, but always has
messages printed out on it, usually in the
middle of your printout.

Of: Computer programmer jargon for “(".

F: Referring to floating-point numbers.
Bayospool: The correct pronounciation of BAOSPL, the
first batch receiver name.

Ristis: It is never pronounced RS T S!

BP2: BASIC-Plus-2 was too much to say.

Dotdotdot: Any RSX job.

Force it: Do nasty things to some else’s job.

Kill it: Get rid of the offender, and/or his file.

Clear-the- Kill all jobs that don't dump their own

system: accounting statistics. Also, remove data

entry jobs.



May/June 1980

page 11

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

Dump:

Minus-"N"":

Takedown:

Crash:

Renault:

RUNOFF:

BATCH:

EDIT-11:

EDT:

TECO:

Error-copy:

Tittyset:

Beepus:

Core exceed:

Garbage
collection:

Glossary

CCL:

CUSP's:

Write to disk. Usually refers to a large
number of blocks output to disk, usually for
diagnostic purposes.

Where N is a number between -128 and 127.
Denotes job priority.

Shutdown of system, as in “do a takedown".

Unscheduled takedown. The unexpected ter-
mination of a job or timesharing.

Jargon for RNO.TSK, the text formatter with
a fascinating hyphenation algorithm.

The original text formatter CUSP, still

unsupported.

Package of programs similar to DEC X11, in
that it tests the load capacity of a RSTS/E
system.

Your better BASIC editor; easy for beginners.

An editor that has taken one small step back
for man, and a giant step forward in support.

The editor for programmers with big egos.
DEC's answer to APL.

For ERRCPY, the CUSP that logs user and
system errors (sometimes).

For TTYSET, the CUSP that sets terminal
characteristics.

Binary Program Update Service. Supplies
Software Product Dispatches (SPD), which
are commonly known as “patches”.

To exceed the runtime system (16K for
BASIC-Plus) or system swap max (up to 31K).
All variables and arrays are zeroed.

The reason why BASIC-Plus programs using
lots of strings may run slowly. The repacking
of strings still in use to make room for new
strings.

Concise Command Language—used to issue
system commands. To invoke a program
without using the RUN command.

Commonly Used System Programs—BASIC-
Plus versions of system commands.

 EDIT-11:

EDT:

TECO:

RNO:

Protection
codes:

Cache:

Cache hit:

Cache miss:

Run-time
system:

Resident
library:

SPR:

Supported:

Unsupported:

Source:

Private pack:

The text and program page editor with a
medium-sized buffer (2-4K Bytes).

MACRO line editor with a small text buffer.

Complex editor/word processor considered a
language by some. Text buffer can be as big
as the system swap max.

MACRO version of RUNOFF, but with lots of
little differences and still unsupported.

Eight bits in a file's directory name entry that
determine the file's read and write accessibil-
ity. They are useful once learned. In general,
RSTS/E automatically protects to a higher
degree than you would think.

Generally, any area of memory reserved for
the temporary storage of data. A PDP 11/70
has a physically separate cache which aug-
ments main memory; however, most referen-
ces to caching refer to the area in main
memory called XBUF.

The next data that the CPU or user wanted
was in the cache area.

The next data that the CPU or user wanted -
was not in the cache area and had to be
fetched.

A preprogrammed set of instructions that
make your program work, and which can
communicate with the monitor. One step
above a resident library.

A read-only set of instructions that can be
shared by different users.

Software Performance Report—form sent to
DEC when reporting software and documen-
tation problems.

If a program or system bombs, DEC will
answer an SPRon it. They are legally bound to
resolve the problem to your satisfaction.

If a program bombs, DEC may choose to help
you but they are not legally liable for any
malfunctions.

Any file that can be listed and edited, and can
be run or transformed into a runnable form;
for example, files with the extensions of .BAS,
.MAC, .FOR, and .B2S.

Disk pack restricted to privileged users. Can-
not be used by the system without explicit
instructions.



page 12

May/June 1980

RSTSPROFFSS]ONALRSTSPROFFSSIONALRSTSPROFESSIONALRSTSPROFESS]ONALRSTSPROFESSIONALRSTSPROFFSSIONALRSTSPROFESSIONALRSTSPROFF.SSl0NALRSTSPROFFSSIONALRSTSPROFBSIONALRSI‘ SPROFESSIONALRSTSP

Public disk: Any disk available to all users, and on which
the system is free to create files and

accounts.

Reorder: Term referring to the restructuring of disk
directories to reduce directory look-up time.
Two actions are possible: restructure only, or

restructure and sorting of files by date.

Swapping
disk:

A non-file structured disk used exclusively for
the storage of non-running jobs.

Swap: To copy from memory to disk (swap out), or
vice versa (swap in), the contents of a user's

Jjob area.

Swap slots: Areas in a swapfile, each the size of the cur-
rent swap max. SYSTAT shows the location of

any swapped out job by A10, BOS5, etc.

CTRL/T: One line SYSTAT for the job attached to your

terminal.

Disk bound: Program continually in 1/0 wait for disk

(DB'ed, DF'ed, DK'ed, etc. in SYSTAT).
Tape bound: Program continually in 1/0 wait for (the
movement of) tape (MM'ed, MT'ed, MS'ed,
etc. in SYSTAT).

Idle time: People who still have front panel lights can

watch the computer not doing anything.

Lost time: What is left over after you add up the percen-
tages of computer time used by USER, 1/0,
Idle, and EXEC, and the total is less than
100%.

Sleeping: The temporary suspension of program execu-
tion (SL). which leaves the job eligible for
swapping ("“sleeping on disk™). Similar to the
action of the PAUSE statement in FORTRAN.
Hibernating: A detached job attempting to perform I/0to
channel O will stop execution and appear in
SYSTAT as HB.

2.2 THE SYMBOLIC LANGUAGES OF RSTS/E

There appeared in a recent issue of a computer industry
trade journal an article on the number and complexity of
languages facing today's programmers. An average of adozen
syntactical and conceptual languages can masquerade as one
high-level language and operating system. The mastery of each
of these mini-languages, referred to as “symbolic languages"
by the author, is required for the successful completion of each
step in a data processing task, such as data base definition or
documentation.

I thought it would be worthwhile to apply this theory to
the RSTS/BASIC-Plus environment, so that new users would
have another perspective on what, and how much, there is to
learn. There is an additional benefit for experienced users,
system managers, and their superiors: the information below
can be used as a yardstick for measuring the technical skills of
Junior programmers. For those of you running the other DEC
languages, it should not be hard to develop a similar evaluation
tool.

Ten Symbolic Languages for RSTS/E

1. Algorithmic Language — IF..THEN..ELSE, GOTO, FOR-
.. NEXT, GOSUB, ON..GOTO, ON..GOSUB, etc.

2. External Data Description and Conversion Language —
MAT READ UNITS, DIM KB.ASSIGN%(10%,10%), FIELD,
etc.

3. Internal Data Language — CVT$%, SWAP%, %, CVTFS,
RADS, CHRS, ASCII, etc.

4. Job Control Language — OLD, COMPILE, RUN, etc.

5. Monitor Command Language — SYS calls, PEEK, /MODE,
< 248 > , all of which are MACRO-like functions for
BASIC-Plus.

6. System Utility Language — PIP, TTYSET, LOGIN, SYSTAT,
QUE, DIRECT, all of which are BASIC-Plus versions of the
fifth language.

7. Debugging and Diagnostic Language — Immediate Mode,
BPCREF, /DUMP option, CONT, MAT PRINT, etc.

8. Editors — TECO, EDIT-11, EDT for programs and
documentation.

9. Text Formatters — RUNOFF, RNO for information retrie-
val and documentation.

10. Plain English — for communication with users.
The most skilled programmer will be able to work in all ten
languages, but if you aspire to a system manager’s job, you
will need at least two more symbolic languages.

11. Hardware Configuration Language — CPU, DH11, etc.,and
device functions.

12. System Generation and Library Language — The CUSP’s
are each a language unto themselves, making up a myriad
of “dialects” that direct system operations.

Finally, a system manager has all of language twelve
stored for instant recall in his or her head:; that s, every last bit
of command syntax and system trivia. Even though DEC issues
more manuals with each new version, the goal is to be as free
of them as possible.

... continued in next issue.



May/June 1980 ' page 13
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

CANADIAN DECUS

Toronto
By Carl Marbach, Editor, RSTS Professional

Why would anyone go to the Canadian DECUS instead of the Spring bash in Chicago? Because it's closer, friendlier (??), has a
tutorial the day before the meeting, and the Canadian Sister of the American DECUS has a flavor that we found more genuine. The
American DECUS seems to be hung-up in its own politics (see Editorial) while the northern counterparts are interested in
information exchange and the well being of its members.

“Didn’t realize Toronto was this close”, my co-editor remarked as we passed over Lake Erie descending to 1500 ft. and the
Toronto Island airport in Downtown Toronto. It was just under 2 hours and 15 minutes since we left the northern limits of
Philadelphia in our light plane. A short ferry and taxi ride left us at the Toronto Hilton in time for the 9:30 beginning of a RSTS tutorial
on performance. While most people arrived via scheduled airline at the Toronto International, and limo'd to the Hilton, we were
energy efficient (22 gallons, U.S.). [The value of light aircraft in transporting people quickly and efficiently has been lost amid the
recent energy mania, but that's another story.]

The Canadian counterpart to the U.S. DECUS meetings offers the same benefits to all comers. The machine room (complete
with VAX that crashed every time the elevators started or stopped; neat power fail!), and had the usual array of hardware for
hands-on experience (games?). The ever-present DECUS/DEC bookstore did the usual land office business and gave away free(?)
rulers.

The meetings were three days of dawn to dusk workshops, lectures, tutorials, and discussions in all the hardware and software
worlds of DEC. Many of the sessions were similar to those presented in San Diego or Chicago, but with enough new thoughts to
satisfy us that the venture north was well worth the effort. After dinner there were more meetings, campground discussions, and at
last the FIRST 10th birthday party for RSTS. Simon, and many of the original and current development team were present and told
secret stories about the real inside world of RSTS. Lest we ever doubt the emotional involvement that these people have, Simon was
rumored to have bought his own airline ticket to the party! Thank you, Simon. Have any of you seen an 11/20 running RSTS (or at
least the null job)? It was doing just that at the birthday party; remember RSTS began as a small sharing-BASIC-only system on an
11/20 (and they say 11/23 can't run RSTS!).

The Canadian members of DECUS are sometimes thought of as secondary members. They are FIRST CLASS. Their applications,
expertise, and organizational skills are something they can be proud of. It is time that their U.S. counterparts started understanding
this fact. The American manufacturers should also pay more attention to the Northern RSTS Customers; they could use more
Canadian representatives and sales offices. From our subscription list, we know that there are a significant number of Canadian
RSTS sites. Go to it!

We won't miss another Canadian DECUS if we can help it. The atmosphere and people are just too good. We need that feeling to
help us along throughout the year. Thanks Canadal

DEC

RSTS/E USERS

From one of the pioneers in commercial
data processing using RSTS. Off the shelf
software ready for immediate delivery.
Completely interactive. Extensively
documented. Fully supported. ldeal for
OEM'’s, service bureaus or end users.
Cost effective solutions including:

ACCOUNTS PAYABLE
GENERAL LEDGER
FINANCIAL REPORTING
ACCOUNTS RECEIVABLE
PAYROLL

For complete details, contact us at:

p |yC OM. senvices, Inc.

P.O. Box 160
Plymouth, IN 46563
(219) 935-5121




page 14

May/June 1980

RSTSPROFFSSl0NALRSTSPROFFSSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFBSIONALRSTSPROFBSIONALRST SPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRST SP

PRESCRIPTION FOR AN OLD PROGRAM

By Rob Davidson, President, Timesharing Consultants of Pennsylvania, Inc.

TCl serves dial-up timesharing customers on two RSTS systems in eastern Pennsylvania
(11/35 and 11/70). The firm specializes in conversion of programs from other commer-
cial vendors such as Call/370. Rob is also a contributing editor to the Auerbach
Computer Technology Reports where he evaluates software packages.

My company has been providing remote timesharing services
on RSTS systems to customers in the eastern Pennsylvania
area for the past 5 years. Prior to that many of my customers
had used the Call/370 Time Sharing Service. As a result, a rapid
conversion technique was required to bring programs and files
over from the 370 system to RSTS. Because of my modest
programming abilities and the constraints of time, many of the
file oriented Call/370 applications were converted using virtual
array files as their basis under RSTS. Virtual arrays are very
easy to use in accessing disk files on a random basis and simple
to understand for the novice programmer. Single virtual string
arrays were used with numeric data packed in using the CVT
functions. Most of these programs have been running without
problem for 5 years.

THE PROBLEM

An inventory program has had major and minor altera-
tions over the five year period. The number of inventory items
has grown from 2,000 to over 5,000. Recently, I received a call
from this inventory user that the updated program had taken
over 5 hours to complete an update of only 100 items. My first
assumption was that the system must be terribly overloaded
or my user had been assigned the lowest of low priorities.
Unfortunately, neither of these was the case. Could it be the
fault of my program, which had performed flawlessly (and
somewhat rapidly) for the past five years? It could!

As | have already mentioned, this program, used as its file
access a virtual string array. This array was assigned a length
of 256 characters and contained 49 subfields, a mixture of
alphabetic and numeric data (both integers and floating point).
The file is accessed on arandom basis using an integer array as
an index to the record sequence. This core array had been
assigned a dimension of DIM 1% (6999%). The program was
currently at the system limit of 16K words or 32K bytes. Even a
single additional line of code would cause a “maximum memory
exceeded” error. In fact in a recent program change it was
necessary to consolidate 5 lines of program code into one line in
order to add a single PRINT statement. The structure of the
program is illustrated below:

READ
TRANSACTION |
RECORD

SEARCH
MAIN FILE
FOR MATCH

READ
INVENTORY
RECORD

UPDATE
INVENTORY
RECORD

WRITE
INVENTORY
RECORD

_

An analysis of each of these program blocks yielded the
following results. In the Step 1. the simple reading of the
transaction could not be improved since only a single INPUT
LINE statement was used. Next, Step 2. utilized standard
binary search routine finding most records in 5 seeks or less.
Step 3. read the record identified in the previous step and
broke it down in the 49 fields making generous use of MID and
CVT functions to breakout the various alpha and numeric
fields. The updating Step 4. simply exchanged or added to or
subtracted from existing fields depending on a given transac-
tion code. The final Step 5. then rewrote the virtual string array
element by re-assembling the forty-nine fields in statements
like the following

I$ = AS (1)+AS(2)+AS(3)+AS(4)+. . . ..



May/June 1980

page 15

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

HOW DO YOU SPELL RELIEF?

The problem called for a two-phase solution. The quick
solution was to reduce that index array 1% (6999%) to a size
more closely aligned to the actual record count. Thus a new
DIM 1% (5499%) saved 3K bytes and brought the program
under its 32K threshold. This reduced the run time for the
update program from 5 hours to 45 minutes. But better
results were yet to come.

First let us consider the problem of the RSTS/E Core
Recycler sometimes called the “Garbage Collector”. Borrowing

from T.R. Sarbin’s File Processing Guide (known to be a hand- .

out at DEC's Introductory Basic Course), here is a short course
in RSTS internal string handling. When a string identifier is
used a string header holds the length of the string and a
“pointer” which locates the start of the string in the string
data table in core.

10 AS = 'ABC’

20 B = 'XYZQ'

String Header Area
Variable Length

AS 3
BS 4

Pointer String Data Area

*r———— A

.

OIN|<|X[O|w

Each time a string is changed or re-assigned, the old string
becomes garbage and the new string uses a new set of posi-
tions in the data table. See the change as shown in the chart
below:

30 BS = 'NEW'

String Header Area

Variable Length Pointer String Data Area
AS 3 o —— 1A
BS 3 B
C
X

(]

Y [ ®

Q

Z S

O
Q
N
E
w

As the program proceeds, garbage is created in the string data
area. In fact, this area gradually fills up until there is no more
room for strings to be created. When this happens, the
RSTS/E Core Recycler is called and the strings are all collected
into the beginning of the string data area.

When the program is at the 32K core limit and the string
data area is therefore restricted, then the core recycler must

RSTS/E ON VAX

ROSS/V
(RSTS/E Operating System Simulator for VAX)

ROSS/V is a software package, written in
VAX-11 MACRO, which provides a RSTS/E
monitor environment for programs running in
PDP-11 compatibility mode on DEC's VAX-11.

ROSS/V supports:
B The BASIC-PLUS interactive environment.
® Concurrent use of multiple run-time systems.

B Update mode (multi-user read/write access to
shared files.)

B CCL (Concise Command Language) commands.
B An extensive subset of RSTS/E monitor calls.

ROSS/V runs under VMS and interfaces to pro-
grams and run-time systems at the RSTS/E
monitor call level. ROSS/V makes it possible for
DEC PDP-11 RSTS/E users to move many of
their applications directly to the VAX with little
or no modification and to continue program
development on the VAX in the uniquely hospit-
able RSTS/E environment. Most BASIC-PLUS
programs will run under an unmodified
BASIC-PLUS run-time system.

RSTS. PDP-11. VAX-11_and DEC are trademarks of Digital Equipment Corporation

ROSS/V is available from:

(Eastern U.S))

Evans Griffiths & Hart, Inc.
55 Waltham Street
Lexington. Massachusetts 02173
(617) 861-0670

(Central U.S))
Interactive Information Systems, Inc.
10 Knollcrest Drive
Cincinnati, Ohio 45237
(513) 761-0132 or (800) 543-4613 outside Ohio

(Western U.S))
Online Data Processing, Inc.
N. 637 Hamilton
Spokane, Washington 99202
(509) 484-3400




page 16

May/June 1980
RSTSPROFESSIONALRSTSPROFESSIONALRST: SPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRST: SPROFFSSIONALRSTSPROFESS[ONALRSTSPROFESS]ONALRSI‘SPROFF.SSIONALRST‘SPROFESSIONALRSTSP

Version 7.0 Users
]

PERFORMANCE MONITORING

RABBIT-3 provides complete job accounting, billing, and performance monitoring data for your DEC computer system.

RABBIT-3 makes available complete user accounting data suitable for billing or cross-charging. CPU, connect and
device time, DCT’s, PPN, and disk usage is captured.

RABBIT-3 will also provide the system manager a complete user log showing each activity session by session. Who used
which resources, what programs, where and when is generated and maintained.

RABBIT-3 is written in PDP macro assembler under RSTS/E version 7.0 contributing only a 1% (approximate) system
degradation.

RABBIT-3 is available through a rental ($99 per month) or purchase ($2500) program.

For more information contact:

RAXCO..

—~

L 3336 N. Flagler Drive ¢ W. Palm Beach, Florida 33407 e (305) 842-2115 )

be called in more frequently resulting in the five-hour run time
of the inventory updating program.

By reducing the size of the index array 1% ), enough core
space was made available to reduce the number of times the
“garbage collector” was called. The second phase in the re-
newal of the up-dating program reduced the amount and
nature of string handling.

To complete the final changes needed, a null buffer was
opened and set at the exact size of the inventory record.

OPEN 'NL:" AS FILE 7%, RECORDSIZE 256%

Next this buffer was fielded to match the 49 fields of the
record

FIELD #7%, 15% AS A$(1%), 4% as AS(2%).. . . . .
with a final overlapping variable for the entire buffer
FIELD #7%, 256% AS 19$

These steps reduced the amount of program code in two ways.
First there was no longer any need to make extensive tests on
the length of various alphabetic strings to make sure they
would fill the virtual array properly. These statements:

AS(1%) = input string
Y% = LEN(AS(1%))

IF Y% < 15% THEN A$(1%)
= AS$(1%)+SPACES(15%—Y%)

ELSE
IF Y% > 15% THEN A$(1%) = LEFT(A$(1%), 15%)

were replaced with:

LSET AS$(1%) = input string
This could be done because once the length of string variable
has been fielded, then any LSET statement either automati-
cally truncates any excessive characters or blank fills the field

(on the right with LSET or on the left with RSET). Secondly, the
record reading routine was reduced to:

LSET 195 = I$ (Z%)

where [$ (Z%) is the virtual array. A series of CVT
functions were added for the numeric data in the record.

The final program alterations were to change the A$(x)
assignment statements in the updating portion to LSET AS(x).
These changes caused a result of 5 minutes run time for a 100
transaction record update or a 6000% improvement in
throughput!!

SUMMARY

A 32K byte virtual array updating program using an over-
sized core index integer array and excessive string manipula-
tion was taking 5 hours to update a 5000 record file with 100
transactions. The program response was improved by reducing
the size of the core index array initially. Further significant
improvements were made by reducing the string handling
through the use of a null buffer, FIELD statements, and LSET
assignment statements. These changes eliminated the need
to call the RSTS Core Recycler for resetting the string data area
and yielded a sixty fold improvement in program throughput.



May/June 1980

page 17

RSTSPROFBSlONALRSTSPROFF.SSlONALRSrsPROFBSl0NALRSTSPROFBSIONALRSTSPROF!-‘.SSIONALRSTSPROFESSIONALRerPROFEss|0NALRerPR0FEsszALRsrsmorassxONALRsrspnomsloNALRerPROFassmNALRSTSP

BOOK REVIEW

By Carl B. Marbach

A GUIDE TO PROGRAMMING IN BASIC-PLUS
Bruce Presley, Stuart Hayes,

Theodore Graham, Harriet Morill
Lawrenceville School, Lawrenceville, NJ $1000

If your installation is typical, there are lots of
users who would like to know more about the com-
puter and how to work it. In my career, more than
one data entry person has graduated to Pro-
grammer. There is a book that is an elementary text
written specifically for RSTS and BASIC-PLUS.

The authors allow that this text was written for
the “classroom” environment. That is, they expect it
to be taught rather than used as a self-teaching text.
The marketing philosophy has also been to sell class-
sized quantities rather than single issues. Once we
are past these philosophies, the book is just what we
have needed for some time, and [ have lots of ideas
on what to do with the books when | get them:; but
first let’s talk about the book.

The book is organized into three main parts:
The first six chapters provide general instruction in
the BASIC-PLUS language and some applications.
Chapters seven to nine are for the more advanced
mathematically or technically oriented person, and
the last three chapters discuss business and related
applications. Each chapter is followed by a section of
exercises, to reinforce the concepts presented and
to ferret out and problems or misconceptions the
student might have picked up. These exercises also
“desensitize” students to the computer by letting
them see that, at their level, they can't yet destroy
large amounts of data or the whole computer by a
single RETURN.

Although this is not as large as DEC's two
volume BASIC-PLUS teaching guide, it is complete.
The explanations at the elementary level are clear
and concise and the student is likely to be successful
in both the exercises and learning basic program-
ming. The guide is just a guide and not a reference
manual. While the explanations are clear, they are
not as detailed as the larger DEC Teaching Guide.
This is less important earlier in the text, but as the
concepts grow more difficult it could be a problem.

| gave it the ultimate test. Our controller has
been itching to do some of his own programming,
but he has never done any before. | gave him the
book as a self-teaching device and gave him his own
RSTS account. In several days he was doing elemen-
tary matrix manipulations and wanted to know how
to store data using block /0. He is now bogged down
in the more difficult 1/0 but he has a beginning
facility with the language. | think that is a pretty
good result.

If there is enough interest, the RSTS PROFES-
SIONAL will purchase a large quantity of the books
and distribute them to subscribers who are inter-
ested in single copies. Write to me at our box. You
won't be disappointed in the book.

HOW TO

JOIN DECUS

Australian Chapter
DECUS AUSTRALIA
P.O. Box 384
Chatswood
NSW 2067
Australia

European Chapter
DECUS Europe
P.O. Box 510
12, Av. Des Morgines
CH-1213 Petit-Lancy 1/GE

Tell them that you received this information in the RSTS Professional.

Send for a membership application to one of the addresses listed.

©

9p]

9]

|_

)]

o

o)

£ Switzerland

=

2

)

€ U.S. and

g CANADIAN CHAPTERS and others
= DECUS

2 MR2-3/E55

ks One Iron Way

£ Marlboro, MA 01752
Q U.S.A.

i

)

Great Newslefters

SORLUG
Linda Adams, Sorlug Treasurer
Alcan Canada
Box 269, Toronto Dominion Centre
Toronto, Ontario M5K 1K1

COMPUTERS-R-DIGITAL
Directory Database Inc.
Box J
Navesink, New Jersey 07752




page 18

May/June 1980

RSTSPROFESSIONALRSTSPROFBSIONALRSTSPROFESIONALRSTSPROFESSIONALRSTSPRDFESS[ONALRST’SPROFBS]ONALRSTSPROFESIONALRSTSPROFBSIONALRSTSPROFFSSIONALRSTSPROFFSSIONALRSTSPROFF.SS[ONALRSTSP

é}O

DEAR
RSTS
MAN

DEAR RSTS MAN: My salesman
always seems to want to sell me
more core. Why?

Signed, Hardcore
Dear Hardcore:

The cure-all for RSTS perfor-
mance is ‘more memory’. If you
have any doubt, add more. For
example, a large 11/70 running 50
jobs can easily use up two
megabytes.

One great way to use up all that
extra memory is with XBUF, the 70
above could constructively use
128K + WORDS of XBUF — and
that’s with only a modest amount of
data caching.

DEAR RSTS MAN: Everytime |
open a file for output, the whole
machine stands still for 30 seconds
and my RPO06 runs like a washing
machine on spin cycle. What's
wrong?

Maytag
Dear Mr. Maytag:

One of the worst ‘machine eaters’
is a very large account ( > 150 files),
actively used for output that is not
reordered almost daily. | have seen
systems lock-up for more than a
minute while the disk drive goes
crazy following all the linkages in
such a UFD. Most poorly perform-
ing systems have several of these
accounts.

There are several solutions. The
disk shakes during such situations
because the clusters that make up
the UFD are scattered randomly all
over the disk. The individual link-
ages of the directory elements may
very well require head movement
hundreds of times for even a few
files. This is eliminated by pre-
extending the UFD to its full
intended size during the initial set-
up of the disc. Thus, all clusters are
probably in the same cylinder.

The system locks-up, because a
directory look-up is a FIP function
that might alter the directory from
happening till the current action is
done. We can’t do anything much
about that, what we can dois speed
up FIP. Pre-extended directories,
frequent REORDR and lots of

XBUF accomplish this end. ‘Large
FIP' in 7.0 also helps with shared
files.

Of course, the other solutionis to
never try to use the RSTS directory
structure as an ISAM index. It really
isn’'t!

DEAR RSTS MAN: When | use
VTEDIT, the scope editor of TECO
on my VT100, it acts just like a
VT52? | want all the neat features of
the VT100 like reverse video. How
have | gone wrong?

Sincerely, Scoped Teco

Dear Scoped:

The VT100 has only one attribute
different than the VT52 as far as
TECO is concerned: XON. Set this
using TTYSET and you’re home (?)
free.

DEAR RSTS MAN: We are trying
to use BASIC PLUS 2 and RMS. But
first we wanted to use a NON-RMS
BASIC PLUS 2 program with the
BASICS shared library. We PIPed
the library and all other files to the
correct areas and made sure the
protection codes were correct.
When we task build using this
shared library we get many error
messages. Why doesn’t it work?

Brave Soul
Dear Brave Soul:

The RSTS MAN notes with inter-
est that you did not BUILD the
shared libraries using the approved
BUILD procedure supplied with
your kit. This BUILD procedure
patches the BASICS.LIB file to
make it compatible by changing
some internal module name from
BP2 to something else. You can
find the BP2 reference with ODT
(in radix-50 in one of the first 50
locations) and changeit yourself or
go through the DEC-approved
BUILD.

DEAR RSTS MAN: | am having a
problem with rounding. | need to
round to Dollars and Cents. Do you
have an easy way?

Round and Happy
Dear Round and Happy:

Dollars and Cents have always
been close to the RSTS MAN's
heart so here is what we use.

DEF FNR(X)=INT(X*10.**2%+.5)/10.**2%

Or you can work with Double
precision integers (SEE Vol. 1, No.
1) and divide by 100 to get to Cents.

Please send your DEAR RSTS MAN
questions to: DEAR RSTS MAN, P.O.
Box 361, Ft. Washington, PA 19034.

AUTHOR!!!

The RSTS Professional wants you to
be an author. Send us your article of
interest to the RSTS community.

STSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROF|

m

Be sure to mail back
your Subscription Card
in time for the
next issue of the
RSTS PROFESSIONAL

LSHTYNOISS3J0HdSLSHTYNOISSIJ0HdSLSHIVNOISSISOHIS LSHTYN

ROFESSIONALRSTSPROFESSIONALRSTSPRO=
0ISS340HdS LSHIVNOISSTIOHISLSHIYNOISS

Special RSTS
Instructions

AOI Add and overflow integer

BSF Branch and swap forever

CRAB Convert Rad50 to Ascii and
back

DQM  Destroy the que manager

ECC Erase core common

FDD Find and destroy data

GBQS  Go to Batch que and sleep

HPP Hold for proper priority

IDS Inspect and deschedule
scheduler

JOM  Jump out of memory
KAJ Kill all jobs

LDO Leave data out

MMT  Mangle mag tape
NNN  No No No

OAD  Open and destroy

PSD Put and scratch disk
QAG Quit Adventure game
RSM  Remove swap medium
TAD Take all devices

SWR  Seek wrong record
UAC  Uncouple all couplers
VGC Vacuum Garbage collector
WLT  Watch lost time

XP X-ray programmer
ZTB Zippy task build




May/June 1980

page 19

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRST: 'SPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

Editor’s Note: This article was reproduced exactly as we received it from the author. This was done to show you just how good
word processing output can look directly from a computer. Word processing can be done using DEC's WPS-8 (a PDP-8/ Floppy)

word processing system alone or connected to RSTS. Data Processin
of WPS-8. This article is applicable to both of these systems.

WORD PROCESSING WITH DEC COMPUTERS
HINTS AND KINKS

Lawrence H. Eisenberg
17141 Nance Street
Encino, California 91316

ABSTRACT

This paper discusses various handy hints and kinks associat-
ed with the use of Word Processing Systems on the PDP-8 and
PDP-11 systems. While developed primarily with WPS-8, the
routines and hints offered generally are applicable with
WPS-11 and other commercially available systems currently
utilizing the WPS-8 format. The discussion presented below
consists of the various matters presented at the Spring 1980

g Design’s WORD-11 runs directly on RSTS and is a superset

Symposium in a Panel Discussion with Ms. Vicki Ann Rose,
Digital Equipment Corporation, Merrimack, N.H., Mrs. Nancy
Evans, Federal-Mogul Corporation, Southfield, Ml and this

author.

LIST PROCESSING HINTS
FIELD IDENTIFIERS AND DATA PROCESSING

The "lists" which are developed in list processing
often are useful for data processing activities as
well as many of the Word Processing and List Proces-
sing purposes. For PDP-11 users, many of the data
files developed under Word Processing may be
addressed directly by data processing. However, for
PDP-8 users the WPS-8 files (which are saved in a
format similar to C0S-310) cannot be addressed
directly by CO0S-310 or 0S/8. While the WS-200
series originally was disigned to provide for direct
communication between Word Processing and C0S-310,
this feature no longer is supported and the WS-200,
as with all other WPS-8 systems, requires conversion
to utilize the files. (Conversion utilities for
both C€0S-310 and 0S/8 are available through the
DECUS LIBRARY. These utilities transfer 1list
processing type files between the various systems.
The conversion procedures are not discussed in this
paper.)

It is most helpful, therefore, to maintain the LIST
FIELD IDENTIFIERS as upper case characters. While
the DEC WPS manuals show the field identifiers (e.g.
- <field1>) as lower case fields, such was not meant
to be a required form for identifying the fields.
The use of lower case by DEC was a throwback to
computer manuals which used lower case to indicate
operator decisions, as opposed to upper case which
indicated mandatory acts.

Since each of the WPS-8 systems utilizes special
characters to indicate lower (and upper) case
shifts, any conversion program is going to require
considerable additional (and wasted) time in order
to perform the conversion, as each of the special
characters will have to be stripped from the field
before the data can be used by the data processing
system.

If there is even the remotest possibility that your
list files will be used in data processing, it is
important to avoid the use of hard [the RETURN key]
returns except at the end of a field identifier. 1In

other words use one identifier for every line of
text, For example:

DO NOT USE

<NAME>John Doe
<ADDRES>123 Any Street
Our Town, U.S.A.

00123

DO USE

<NAME>John Doe
<ADDS1>123 Any Street
<ADDS2>Qur Town, U.S.A.
<ADDS3>

<ADDS4>

<ZIP>00123

In many conversion programs, and nearly all data
processing programs, the carrier returns within a
field will be read as a terminator, and the informa-
tion following the return will be lost during the
conversion or use by the program.

While the use of several fields may appear somewhat
cumbersome at first, the benefits soon become very
apparent. Also, the more available fields, the
easier it is to edit and to SORT!

SELECTION SPECIFICATION - TO SELECT ONLY IF SOME
CHARACTER EXISTS

The DEC manuals fail to disclose the selection
specification which can.be used to select a record
only if a field has information. The wild card
specifications presented by DEC are <?> and <¥>.
The <?> is used to replace a letter (i.e., it must
be preceded or followed by some character other than
a <). The <¥> is used to define a field as
containing ANY OR NO characters.

From time to time it is necessary to select a record
ONLY IF A GIVEN FIELD HAS SOME INFORMATION. There
are two possibilities; the first example given is
the most reliable:

(1) if<field5> =<?><¥*>
then process record

(2) not if<field5> =
then process record



page 20

May/June 1980

RSTSPROFE'.SSIONALRSTSPROFESS[ONALRSTSPROFFSS[ONALRSTSPROFESS|ONALRSTSPROFFSSIONALRSTSPROFFSSIONALRSTSPROFESSIONALRS‘ISPROFT:'SSIONALRSTSPROFESSIONALRSTSPROFBSIONALRSTSPROFESSIONALRSTSP

USE
The last example would follow other
if used alone the results are not

(The use of lower case is for example, only.
UPPER CASE!)
qualifiers;
predictable.

DELETING UNUSED LINES FROM FINAL OUTPUT WHERE THERE
IS NO DATA

Regretably this author allowed an article to be
published upon this subject (12-BIT Nov. 1979) which
contained an inaccuracy. The information which is
presented in this paper is correct, and has been
tested under several conditions. (The prior article
presented a situation which would work only if the
field size was known in advance.)

DEFINING THE PROBLEM: EMPTY FIELDS ON LINES WHICH
SHOULD NOT BE PRINTED. The problem which often is
encountered is how to eliminate blank lines which
are printed when there is a field which is empty,
but which has been defined in the form. We will use
an address block as an example.

<NAME>

<TITLE>

<COMPANY>

<APT/SUITE#>

<ADDR1>

<ADDR2>

<ADDR3>

<C1/ST/ZP>

<DROP>

In the example presented it is obvious that several
of the fields might not be present in the final
printout. The individual may have no title; s/he
may not be associated with a company; there may be
no apartment or suite number; there may only be a

created in the manner indicated, which, in the
example (and only by way of illustration) would be
the same as the LIST, the final output would be
printed with blank lines for each line on which
there is missing data.

There is a solution, It takes a little planning,
but once understood, it is simple to apply to every
situation. (Just keep in mind, however, that this
solution will cause each missing field to disappear
and to bring the following line up one line feed!
You must remember to allow for this, if the missing
lines could affect other line-count features of your
form.)

The first step is in the creation of a FORM. To
accomplish the desired result for any set of circum-
stances it is necessary to create two FORMS. The
first FORM should include only the variable informa-
tion, and will, itself, become the LIST which then
will be used to create the actual FORM or PRINTOUT.
THERE CAN BE NO SPACES OR TABS ON ANY LINE WHICH MAY
"DISAPPEAR", EITHER IN THE ORIGINAL LIST OR ON THE
FORM. (Adjust the Left Ruler in lieu of a single
tab, if indentation is desired.)

The FIRST FORM is created to determine which, if
any, fields are not present and autamatically to
create a "wrap", as opposed to a HARD RETURN, for
each such field. It also is used to create the
second LIST. To accomplish this, it is necessary to
create "soft" returns on each line which may not
have information upon a field. This is done by
using dummy rulers after each line which reasonably
is expected to "wrap". Using the LIST above, and
assuming that EVERY LINE may possibly have a missing
field, we could create a form as follows [NOTE THE

single address line. However, if the FORM is RULERS!]:
Le—=-- - —-— —-— -=—=R-=-
. 1 3 2 5 3 < L . 5 + 6 5 T . 8
SeRe Tt (e o e L IR0} A s ol ool (0] T wiv s D ym v v sDomensinses Qemsmenins Dimeaomensd
<<KNAME><NAME>
LT--- - —— - --R
<KTITLE><TITLE>
L -— - - R - -
<<COMPANY><COMPANY>
LT===- - - —_— Y
<<APT/SUITE#><APT/SUITE#> "
Lime e ——repfCe e kel P ol
<<ADDR1><ADDR1>
LT - R s
<<ADDR2><ADDR2>
L - - =R
<<ADDR3><ADDR3>
LT - - R
<<CI/ST/ZP><CI/ST/ZP>
T [oe~ = s eyl il | sl o} R—-
<<DROP><DROP>
LT==——- - —_—— - R -— -
<O

Note that each of the rulers is identical, except
for the dummy tab which follows every alternate
ruler. The only purpose for the tab is to create a
new ruler which can be imbedded. (If the rulers
were identical, they would all disappear, and the
method described could not be used.) Also note that
the last line, DROP, has been indented by changing
the left margin. The "indent" feature may be used
on any line and is used to avoid the insertion of



May/June 1980

page 21

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

tabs or spaces which necessarily will defeat this
utility. Also note the M"<<" identifier to create
the new 1list! (Down arrows indicate hard returns
which may be observed with GOLD VIEW.)

Using the blue EDIT keys, proceed to the beginning
of each line AFTER A LINE WHICH MIGHT RESULT IN AN
EMPTY FIELD. ©Use the Blue LINE key to travel from
line to line. With the cursor on the left margin,
strike the RUB CHAR OUT key ONCE. (This will delete
the hard return and, upon a GOLD VIEW, will disclose
a funny looking circle at the end of the sentence,
instead of a down arrow.) Repeat for each line
which might reasonably be expected to have an empty
field. [If it becomes necessary to edit the last
letter, back the cursor to the end of the line --
this will place it under the last letter -- and
insert the new characters. The last letter will
continue to travel and, if undesired, must be
deleted.] Run the List Processing feature, creating
a document. The document created by this feature
will, itself, become the LIST for the second part of
the program.

Upon completion, you will have created a form which,
when operated with the List Processing Feature, will
result in a new LIST which will have "wraps" in each
empty field, between a ruler. YOU MUST BE CAREFUL
TO AVOID TABS OR SPACES IN EMPTY FIELDS AND IN THE
FORMS or this utility will not work properly.

The SECOND STEP is to create another FORM, which is
identical to the first, except for the special field
indentifiers.

From the following illustration (on the next page),
note that that extra field identifiers have been
removed. This will be the final 1list and will
eliminate the spaces between lines which otherwise
would have been created as a result of unwanted
fields.

If you should find spaces between lines, the problem
most likely will be that tabs or spaces were
imbedded in either the FORMS or the original LISTS.
Check them carefully.

The following form is such an illustration:

As with the first FORM, line feed to the begin-
ning of each line AFTER the field which may not
be present, and enter a RUB CHAR OUT to delete
the hard return. (If you merely copied the
document, be careful, as you may delete a
character from the preceding line. To edit this
problem, BACK UP to the preceding line (you will
be on the last character). Re-type the last
character (the one which is above the cursor)
and any character which was deleted. Finish with
a hard return. Delete the remaining character
above the cursor, which should remove the hard
return, also. (Check with GOLD VIEW.)

Now, USING THE NEW LIST CREATED BY THE LAST FORM
AS YOUR LIST DOCUMENT, run the list processing
again. This time, the new document (which also
can be a direct PRINT) will cause all of the
empty fields to "fold" upon themselves, so that
all of the rulers with "soft" returns will col-
lapse and final output will be without lines be-
tween information. While all rulers will appear
on the screen, there will be no returns within
them; the printer will skip to the next line of
text without printing the "empty" lines.

If it appears that there is a space between
rulers on which there was no data, check to see
if there had been a space or tab on either of
the FORMS or LISTS wused for the procedure.
Check your original LIST with GOLD VIEW. Each
empty field's right arrow should be followed by

an immediate down arrow (without a space).

Remember, you only have to create the two forms

ONCE. They can be used for every processing
run. (Actually, you need create the form only
once, and then add the extra field identifiers

to one of the forms. If you should get a line
wrap, because of the extra space required by the
new field identifiers, don't worry. The program
automatically will adjust.)

PROGRAMMING NOTE: Although you can use the same
selection specification for both forms, you also
can use the simple specification of "process
record" for the second run, as you already have
specified the records to be used.

S S S R Rimmmmm st cae o
1 . 2 3 . 5 6 . 7 . 8

Y | P ei Do siensanis Beittiticsime0amion s Y P Ovevnnnnn. 0..... ....0

<NAME>

| R S oo e

<TITLE>

S S P

<COMPANY>

e O S R S S O S

<APT/SUITE#>

L S S S Ratowooacw

<ADDR1>

LT ——————m e __C e e Recwmemme L _

<ADDR2>

e 0 S O S e S S Resmsmemaass oo

<ADDR3>

I o A S Rt e e

<CI/ST/ZP>

el TESHE. S S S S e S S R S S

<DROP>

L T e e e o Rem e




page 22

May/June 1980

RSTSPROFFSSIONALRSTSPHOFESSl0NALRSTSPROFESSIONALHSTSPROF!"SSIONALRSTSPROFESS[ONALRSTSPROFESSIONALRSTSPROFFSSIONALRS’!SPHOFESSIONALRSTSPROFBSIONALRSTSPROFESSIONALRS]‘SPROFF.’SSIONALHSI‘SP

COMFORT NOTE: Although this may appear somewhat
clumsy, it actually is rather easy and once you
get the hang of it, you will find the procedure
very useful!

USING LIST PROCESSING TO CREATE AN INDEX OR
TABLE OF CONTENTS

Presently there is little ease with which to
create an index or a table of contents with the
existing WPS-8 or WPS-11 systems. While 11-based
systems will semi-automatically create an index
and Table of Contents, and most dedicated word
processing systems do the same, some ingenunity
is required to acomplish this with DEC's systems
(although we are assured that this, too, will
change some day!).

For the time being, a fairly long document can
become a LIST document using the following
procedure.

First, copy the document over to another loca-
tion (or on another diskette), as you are going
to alter it (i.e., destroy it) considerably.

Second, decide on some easy shorthand for the
catagories you are going to use with your index
or table of contents. For example, you might
wish to use <H> for headers; <N> for names, etc.
Choose a character to be used as a dummy field
identifier, e.g. <X>.

Enter a terminator and the dummy field identi-
fier in the PASTE buffer, as you will be using
it quite a bit during this exercise. (To enter
it in the paste buffer, type it and then cut
it.)

E.g.: O<KX>

Start the document with the dummy field (e.g.,
<X>) and proceed to the first data which is to
be used in the Table of Contents or Index.
Let's suppose the first data is a header, which
will use the <H> identifier. Enter a terminator
<> and field identifier <H> immediately preced-
ing the header and then enter the PASTE immedi-
ately after the header. Thus, the document
would appear something like this:

1
1
1
]
]
1
1
1
1
I
[}

ct

o

hel

o

L]

gel

\b)

18]

(0]
1
1
]
1
]
]
]
1
1
1
1
]
[}
1

(miscellaneous data)

<><H>TITLE OF DOCUMENT<><X>

<O<H>First Subheading<><X>

(miscellaneous data)
OLX>KN>(desired name) <><XD>

1
1
]
1
1
1
1
I
I
1
)
I
I
1
]
1
I
1
1
:
1
! (miscellaneous data)
]

1

i1<> [entered as last character in document]

| ==—————— bottom of page —cmmemmeen

In the same manner, identify the different

titles throughout the document, such as names,
subtitles, books, etc., until you have identified
each item which will be used in your index or Table
of Contents.

CAUTION: As you proceed through the document, enter
the PASTE in a random manner (i.e., insert the dummy
field identifier <><X>) about every 2/3 screen, or
more often. This is necessary as no field may
contain more than 1500 characters, and to avoid an
error message you will have to insert the dummy
field every so often. It doesn't matter how often
you use the dummy field, as it never will be
referenced during list processing.

At the very end of the document, be sure to enter a
terminator <> or an error message will occur (it
won't affect your program, but no error is more
comforting than some buzz error which might leave
some doubt).

After proceeding through the entire document, you
can create a very simple FORM and SELECTION SPECIFI-
CATION. The FORM may consist of a single entry
(e.g., <W>). The selection specification may be
"process record". Operating the List Processing,
then, will transfer each data identified with the
<H>, and will skip all of the rest. (If you have to
format the output, it will be much easier to do so
after running the list processing.)

Also, if you have the type of document which might
require some form of sorting, such as alphabetical
listings, you can perform some minimal alphabetical
sorting by use of the wild cards in your selection
specification. (This will require several runs
through the list processing; e.g.: if <N>=A* then
process record, will pick up every name starting
with an upper case A, etc.) If there are only a few
records, then use of the cut and paste feature will
probably result in an easier, as well as faster,
alphabetical processing.

Another feature, which will result in much faster
opeartion if several field identifiers are being
used, is to utilize the double LIST feature (i.e.,
create a new LIST with a single pass). To create a
new LIST, set up your FORM (for the above example)
as follows:

<<KH><H>
<<KN><KN>
<>

Processing the entire document will fill a new
document with each field, in a random manner, and
you then can run a second pass which will be more
selective as to the order in which you want the
items to appear. All of the dummy <X> field data
will be omitted from the new LIST.

USING LIST PROCESSING TO LOCATE DISKETTE INDEX
INFORMATION

It is not unusual to want to find information from a
diskette index, and to avoid going into the index
(where there is a danger of losing the document).
The diskette index is set up as a LIST document, and
can be used for many purposes. (It even can be
alphabetized, or otherwise sorted, if care is used,
by using the procedures set forth above, or with the
SORT program available to WPS-8 users.)



The move that captures
thousands of dollars
in the DEC-compatible game!

EXPANDING YOUR DEC PDP/11 SYSTEM?

For less than half the cost (see chart], our equivalent DEKMATE' expanded RP06 disc C QM P ARE OU R PR l C E S

subsystem delivers:

e 50% more data storage, DEKMATE DEC
® 50% increased data transfer rate, and DMO6 (300MB) $19,950 | $44,000 RJPO6 (200MB)
e 20% faster seek times| DMO06/70  (300MB)  $21,700 $44,000 RWPO6  (200MB)
When these features are combined with our short delivery time and the following DMO02 (BOMBJ  $12,950 | $24,000 RJMO02  (80MB)
DEC compatible factors: DMO03/70  (80MB) $14,700 $25000 RWMO03 (80MB|
-omp : ) ) ) ) DM-300  (300MB) $12,950 | $34,000 RPO6 (200MB)
e is software transparent to all DEC Operating Systems, Diagnostics, and Drivers, DM-80 (8omB) S 7.950 $18,000 RMO2 (80MB)
e is fully media compatible (we use the same disc manufacturers as DEC), and DM-77 (125IPS)  $10,995 $28,000 TJU77 (125IPS)
@ is 11/70 Cachebus, Unibus, or Q-bus compatible DM-45 (751PS) $ 9,995 $23,000 TJU45 (751PS)
i i >, : ABOVE DEKMATE systems are expanded or medla compatible versions of stan-
you have the winning c.ost/performance strategy in the DEC-compatible game! dard DEC RPO6/RMO2 disc subsystems and TU77/TU45 magnetic tape
The extra plus—-we service what we selll subsystems. These subsystems are 100% compatible with all DEC software,
Our large staff of DEC-experienced service engineers is always ready to install and diagnostics. and drivers., Expanded.capability may require patches.

maintain your DEC systems. ADVANCED

* DEKMATE subsystems are industry proven, high quality CDC, Memorex or Ampex disc drives D l GI I A L

and Emulex controllers. Also offered are high performance, reliable magnetic tape subsystems, PRODU
DZ11's, DH11’s, high speed MOS memories, printers, and other hardware. Call or write us for o CTS

your hardware requirements. P.0. BOX 22657 « SAN DlEGD, CA. 92121

* DEC, PDP/11 are registered trademarks of Digital Equipment Corporation. [7 1 4] 455-9150




page 24

May/June 1980

RSTSPROFESSIONALRSTSPROFESS!ONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESS]ONALRSTSPROFFSSIONALRSTSPROFF.SSIONALRSTSPROFBSIONALRST‘SPROFFSSIONALRST‘SP

The INDEX LIST for each diskette is formatted:
<n>title data <#>5<>

Using <n> for your selection specification, you can
seek any type of sequence desired. E.g., if you
want to find if "John Doe" appears, and on which
document(s), the selection specification could be
set:

if <n> =<¥>John Doe<¥>
then process record

The FORM would be set:
<> <#>

Running the List Processing will show the presence
of the requested data, and the document number, each
time it appears. On long or several indexes this
can save time, and is more positive than using the I
command to examine every page of every index.

MBER ST WORD PRQCE

Presently there is no easy way to number the lines
on a document under WPS-8. Perhaps some day the
powers to be will provide us with this feature, but
for the time being it is necessary to use some
planning in order to accomplish line numbering.

At the moment, the easiest way to number lines,
whether starting with 1 and proceeding to nnnn,

or repeating the same number of lines per page, is
to do it by brute force.

Create your document in the normal manner, but allow
sufficient extra space on the left margin ruler for
the numbers to be used plus at least two spaces.
Thus, if you ordinarily would use the left margin
for your left ruler and expect to use three digits
for the numbers, set your left ruler, initially,
five spaces to the right. (NOTE: There will be a
slight variance in this procedure for inside
paragraphs. This is discussed below.)

Upon completion of the document, AND AFTER FINAL
EDITING, the line numbers can be added by re-setting
the left margin on the ruler to its normal location
AND INSERTING A TAB AT THE FORMER LEFT MARGIN
LOCATION. While this would ordinarily cause the
text to "re-wrap", it will make no difference.

Proceed to the beginning of each line, using the
BLUE LINE editor key.

Enter the line number and then TAB. Repeat this for
each line to be numbered. Since the text already
has been edited, the new line numbers will not
affect your prior formatting, as you are using all
of the extra space with the line numbers and tabs.

If you need to enter identical line numbers for each
page (e.g., such as with legal pleadings of 1
through 28 or 32 for each page) then you can do this
with a User Defined Key. Anything more, however,
will use up all of the buffer space available for
the User Defined Keys.

The use of the line numbers and tabs will not affect
right justification, as each line number will follow

a soft return. HOWEVER, SUBSEQUENT EDITING WILL BE
VERY DIFFICULT. Therefore, try to avoid numbering
the lines until the document is ready for final
output.

INSIDE PARAGRAPHS

To use the line numbering feature on inside para-
graphs, where the numbering is to remain on the left
margin, use a W (wrap) in the ruler instead of the L
for Left Margin. The first line of each inside
paragraph will have to be double tabbed, but you
will find it fairly easy to master after a few
attempts. When you are ready to insert the line
numbers, it will be necessary to remove the W from
the ruler, and to replace it with a T (tab). When
tabbing over from the number insertions, the text
will remain formatted in the same location as with
the W, and, as before, right Jjustification will
remain undisturbed.

If further editing may be expected, it may be easier
to retain a copy of the document before line number
inputting, especially where the editing may be
extensive. The procedure indicated is not intended
as a solution, but, rather, as a procedure which may
make life somewhat easier for you.

INSERTION OF PORTIONS OF LONG DOCUMENTS, TOO LONG
FOR "CUT AND PASTE", AND/OR WHERE ALL IMBEDDED
MATERIAL IS DESIRED, AND/OR WHERE A "GO GET" ROUTINE
IS NOT AVAILABLE BECAUSE THERE IS INSUFFICIENT ROOM
REMAINING ON THE DISKETTE

It is not at all unusual to have the need to use a
portion of a long document in a document presently
being created. Quite often, also, the size of the
required material exceeds the buffer space allowed
with the "cut and paste" method (which often deletes
a lot of the material you wanted); the remaining
space on the diskette is insufficient to allow you
to GO GET the old document, and then cut out the
unwanted portions (even if all you want is in the
first few pages) or you want to retain imbedded
materials, such as rulers and page markers, and the
cut and paste method won't retain them. Do not lose
hope, there is a fairly simple remedy.

SOLUTION: Edit the old document to the portions
desired. Enter a "boilerplate library" type of
indicator at the beginning of the text to be copied,
and a <> terminator. E.g.:

<KCOPY1>>text material (may be as long as
needed) <

Use the same procedure for each section to be
copied, but identify each portion with different
names, e.g.: <KCOPY1>>, <<KCOPY2>>, etc. (These
identifiers can be removed, later, quite easily by
using the blue <> key to advance through the
document and rubbing out the identifiers.)

Note the drive and document number of the old
document. Return to your new document and, with the
Gold Menu (i.e., the editor menu) feature, change
the boilerplate library to the drive and document
number containing the old document.

Proceed to the portion of the new document which is
to receive the old document's information, enter



May/June 1980

page 25

RSTSPROFESSIONALRSI‘SPROFESSIONALRSTSPROFESIONALRSTSPROFFSS[ONALHSTSPROFESSIONALRSTSPROFEESIONALRSTSPHOFFSSIONALRSTSPROFESSIONALRSTSPROFFSSIONALRSTSPROFESSIONALRSTSPROFFSS]ONALRSTSP

GOLD LIBRARY and the name (e.g., COPY1, COPY2,
etc.). The information will be transferred, includ-
ing all imbedded materials, such as rulers.

After using this method, be certain to reset the
boilerplate library, in the editor menu, for its
proper location.

B AND BOILERPLATE LIBRART

There is no end to the utility to which the system
libraries may be appreciated by the Word Processing
operator. Undoubtedly, these features are among the
most important individual assets of the entire
system.

Naturally, the needs of each user will be different.
We believe that the following hints will be of
interest to most users.

UPPER VS. LOWER CASE FOR FIELD IDENTIFIERS.

Again, as with List Processing, there is no require-
ment that you use lower case field identifiers for
the libraries. In fact, upper case identifiers
generally are much preferable, as reference to the
library document may be made in upper or lower case
and still retrieve the document, whereas if the
library field identifier is in lower case, only a
lower case identifier will retrieve it. This
especially can be annoying if you are seeking an
abbreviation library document (which does not echo
the input on the screen) and you happen to have the
caps lock activated.

LOCATION OF LIBRARIES

The Word Processing manuals and the self-paced
teaching manuals for WPS-8 identify SYSTEM 2 and
SYSTEM 3 as the location for the abbreviation and
boilerplate libraries. Indeed, all the software for
the Word Processing software comes with SYSTEM 2 and
SYSTEM 3 initiated as the respective libraries.

There is no magic in the assignment of locations for
the libraries and your own particular needs should
dictate where these libraries are located, and even
whether you might wish to change libraries during
different operations (a very helpful and powerful
feature) .

In a client or job oriented operation, where each
client or Jjob is assigned an individual data
diskette (or BRLO1 allocation) it might be most
helpful to always have the boilerplate library as
the first document to be created on that data
diskette (which will always be document #2, as #1 is
reserved for the diskette's index). If this is
done, data which is repetitious for each client or
job easily may be recalled by using the same
abbreviations or identifiers for each diskette. For
example, in our own operations we would identify the
name and address block of our client with a field
identifier of <LKCLIENT>>. Since this information
resides only on the diskette in use, every time the
library identifier of CLIENT is used, the name and
address of that client is displayed in the document.
Naturally, the same is true with all information
which applies to the specific account, but which is
similarly identified for all accounts.

In this manner, the SYSTEM diskette's space is
reserved for other needs, and many other libraries.

ALTERNATING LIBRARIES

There is no particular requirement that the library
document always be in the same location. On the
other hand, it often is helpful to be able to have
several documents available on a given diskette
which can be utilized as a library document for a
particular purpose. This especially is helpful in
creating new documents, where there is going to be
repetitious use of some phrases. A new abbreviation
library can be created, for these phrases only, and
the phrases called with short entries. When
completed, the library contents can be deleted (or
retained, if desired) and the library document
changed to the standard.

The use of such a "temporary" library especially is
appreciated when one no longer has to search through
the current document for specific phrases to be "cut
and pasted" at a specific location.

Also, if a library document becomes too lengthy,
then it takes a considerable period of time for the
computer to find the phrases you need. To avoid
this problem, you often can break your library
documents into catagories, and, knowing the catagory
desired, assign that document as the library (abbre-
viation or boiler plate) document for the current
assignment.

USE OF THE HELP COMMAND FOR LIBRARY CONTENTS

As use of library documents increases it becomes
increasingly difficult to remember field identifier
assignments, and hard copy reminders become anti-
quated, misplaced, or unhandy. There 1is, however,
an on-line solution, and that is a HELP COMMAND.

When creating a library document, the first field
identifier should be <<HE>> for the abbreviation
library and <<HELP>> for the boilerplate library.
(Entering "help" will call the field in both cases,
although the extra letters ("1lp") will appear on the
screen after an abbreviation library call.)

Prepare a Table of Contents which identifies each
field identifier and its meaning, which can be
called by the HELP command. As each new abbrevia-
tion is added to the library, the HELP section also
is updated with the new command information.

To seek and examine the HELP information, which only
can be accomplished while editing a document, the
operator simply (1) enters the SELect key; (2)
enters GOLD ABBREVIATION or GOLD LIBRARY and the
word HELP (although only HE is required for an
abbreviation); and the HELP information is displayed
upon the screen. [Reference to "sub-help" libraries
may be followed with another GOLD LIBRARY command. ]
After examining the displayed information, the
operator (3) strikes the CUT key and all the
displayed information is removed from the screen to
the position where the SELect was inserted and the
library may be accessed for the desired field.

By no means is the information provided here
exhaustive of the potential for the HELP library.
One may use HELP as a key to provide the operator

. . . continued on page 72



page 26

May/June 1980

RSTSPROF-ESSIONALRSTSPROFFSSIONALHSFSPROFESSIONALRSTSPROFESSIONALRSTSPROFESIONALRSTSPHOFF_SS[ONALRSTSPROFF_SSIONALRSTSPROFE‘SS]0NALRSTSPROFESION/—\LRSTSPHOFESS]ONALRSTSPROFESS]ONALP\STSF’

CONVERSION TO VAX (“native mode”) BASIC

By Kenneth Ross, President, Ross Systems, Inc.

SUMMARY

A “proper” migration path to the VAX from RSTS has been discussed since the first VAX was announced
some years ago. The RSTS community has screamed about compatibility (or the lack thereof), yet DEC has
not really come to grips with the problem of an exact conversion path. DEC has developed VAX-BASIC which is
remarkably similar to BASIC-PLUS . Our firm, for reasons presented below, decided to acquire a VAX and to
operate it in “native mode” to gain the benefits of a virtual machine. As of this writing (April 1, 1980) our
3MB VAX is due in June, and a representative sample of our software (all written in BP+/BP2) has been
successfully converted to VAX-BASIC. The resulis are discussed below.

OUR BUSINESS ENVIRONMERNT

Ross Systems is involved in management consulting,
computer time-sharing and the sale of proprietary software
products. We presently have a staff of 36 people and offices
in Palo Alto, San Francisco, and Los Angeles. We have 3 PDP-
11/70's with the VAX on order. We have 2 proprietary soft-
ware products, both written in BASIC-PLUS II that make up
the bulk of our timesharing users and that we offer for sale.

MAPSm — Recognized worldwide as the leading pro-
duct for financial modeling, reporting and consolida-
tions. MAPS combines ease-of-use with the flexibility
to handle large, sophisticated financial problems.

INTACm — A new concept for interactive data man-
agement, features an easy-to-use question and
answer format combined with a unique report pro-
gram generator and a screen formator/transaction
program generator. INTAC can be used by business
managers to create applications and by programmers
to reduce programming time.

As our timesharing business grew, it became increas-
ingly obvious that we had to be able to add bigger "chunks"
of computer capacity than an 11/70. In addition, the pro-
cessing requirements of our larger corporate clients operat-
ing financial modeling and consolidation systems needed the
capacity of a “virtual machine”. Some of our larger financial
models are in the order of 700 rows by 40 columns and we
felt they could be run more effectively on a VAX

Clearly a VAX operating in compatibility mode or with
an emulator would not solve our basic problem, so we began
the process of converting enough of our software so that we
could be sure of success.

OUR SOFTWARE STRUCTURE

When we began to work on RSTS machines, we made
the decision to minimize the use of system dependent func-
tions (SYS calls) and to write in BASIC that was as “vanilla”
as possible. Essentially, all of our products are composed of
multiple programs that CHAIN between themselves to per-
form a series of particular functions. We use a few rudi-
mentary SYS calls e.g. get/put core common, and get a job
number. The most RSTS dependent function contained in
our software is the use of Pseudo keyboards for the auto-
matic compilation and linking of generated programs. We
make extensive use of virtual arrays both as file structure
and as a method to pass information between programs. All
of the programs are written in BASIC-PLUS II.

GENERAL CONVERSION COMMENTS

In general, the overall conversion was extremely easy.
We were working with the first field-test version of VAX-
BASIC, and we did encounter a few bugs, each of which were
due to be fixed in later field test versions, and none of which
were not solvable by some other method.

VAX-BASIC combines the ease of use of an interpreter
with the speed power of a compiler. Programs can be devel-
oped quickly, interactively similar to BASIC-PLUS yet they
can also include linkage to compiled modules both in BASIC
and in other languages. Most of the RSTS type BASIC state-
ments are available such as FIELD and CVT $% etc. Data file
structures default to 8 byte floating point and 2 byte integ-
ers so that they are compatible with RSTS files. For INTAC.
we developed our own, sophisticated file structures and we
had no problems in transfering INTAC files from our RSTS
machine to the VAX to be read by INTAC converted to VAX-
BASIC.



May/June 1980

page 27

RSTSPROFFSS!ONALRSI‘SPHOFESSIONAIRSTSPHOFE&SIONALRSTSPﬂOFL'SSIONAI.RSTSPnOWSSI0NALRSTSPF(OFESSl0NALRs‘I‘SPHOFESSu)NALHSTSPHOF&SSIONALRSTSPROFESSIONALRS!SPROFFSS[ONALRsrspROFESSIONALRSTSP

On the VAX, large systems such as MAPS would tend to
be linked together into one large program using the exten-
sive subroutine facilities rather than CHAINing amongst
multiple prograrmns. The compiler/interpreter features allow
this to be easily done.

SOME CONVERSION POINTS
1. CHAIN is supported but only without line numbers.

2.Core common is not supported.

3. All SYS calls must be changed to VAX equivalents (if
available).

4. When a subroutine is called, variables are not
reinitialized.

5. Virtual arrays must be opened with the VIRTUAL
option.

6. Clustersize cannot be used on an OPEN.

TIMING

The following CPU second timings were done on the
initial version of VAX-BASIC. It is our understanding that
VAX-BASIC has been “tuned" for performance since that
version.

CPU CPU CPU
TASK 11/70 BP  11/70 BP2  VAX
1. Large Compile 21 159 22
2. Execute an INTAC NA 5.5 5:5
program
3. Virtual array NA 190 356
processing
4. FIELD statement NA 31 35
5. PRINT 50 spaces NA 35 29
on disk
6. INPUT LINE NA 49 28
7. INSTR NA 57 28
8. Integer arrays NA 279 9.6
9. MID NA 52.3 15.2
10. MOVE FROM NA 263.2 56.7
CONCLUSION

We believe that VAX-BASIC will offer us a high degree
of compatibility to our RSTS systems, while providing us the
performance increases that we require. For those of you
who were involved with the release of BASIC-PLUS Il in 1977
(?) and the horrible performance characteristics that if
offered, VAX-BASIC seems to remedy most of those com-
plaints and offer the solution that we originally wanted for
the PDP-11.

What Can One Coupon Get For You?
A Free Resume Kit. ..

From the Only Employment Service with Twin Inhouse PDP
11/70 RETE systenas.
An Invaluable Aid In Your Job Changing Process

The Kit presents in an uncomplicated format what we’ve learned in over 15 years of employment service to
the computer industry. Fill out the coupon and return it to us. We’ll send you our free Resume Kit.

Name Applications

Address Degree Yr. Grad, No. Yrs. Experience
City State Zip Current Employer s

Phone . Job Title T

Hardware Languages -

We have many exclusive Data Processing positions available — locally and nationwide.

Scientific Placenenit, Inc. emomen sene

P.0O. Box 19949 Houston. Texas 77024 (713) 496-6100

EiE

L



page 28

May/June 1980
RSTSPROFFSSIONALRSTSPROFESSIONALRSTSPROFFSSIONALRSTSPROFESSIONALRSTSPROFFSSIONALRSTSPROFESIONALRSTSPROFESSIONALRS'ISPROH‘SSIONALR.S‘I‘SPROFFSSIONALRSTSPROFE‘SSIONALRSTSPROFESSIONALRSTSP

RSTS Disk Optimization

By Mike Dash, John Fluke Mfg.

Probably every RSTS user, at one time or another, has tried to get a little more performance out of
his/her already loaded-down system. Often, because time-sharing systems tend to be disk-bound, this
means optimizing the structure of the disks.

Disk optimization is not easy, and it can require very careful analysis and study. However, version
7.0 has added some good tools, and makes it substantially easier to build and maintain well-built disks.
As we explore the uses of these new tools, we will be able to extend the RSTS community’s growing body
of disk knowledge; in this way, we can all continue to help each other learn more and more about the best
ways to use our systems. -

Therefore, we are re-printing a DECUS symposium paper titled “Building a well-structured disk".
The paper was written for RSTS 6C; this means that the material on analyzing a disk is still applicable,
but the actual building methods and techniques do not reflect the new power of 7.0.

We hope that this reprint will stimulate your thought, experimentation, and contributions on how
to build disks under 7.0.; it also expresses our thanks to DEC for responding to us, and our hopes that
they will continue to expand RSTS's capabilities for analysis, control and structure of disks. In future
issues of the RSTS Professional, we will publish a compilation of your methods, comments and

suggestions on disk building.

BUILDING A WELL-STRUCTURED DISK

I. Introduction

A. Why bother?

RSTS systems are often disk-bound. Therefore, perfor-
mance can often be improved when the disk structure is
improved. The disk should be tailored to fit the requirements
of your installation, and RSTS offers some of the necessary
tools. (For an excellent discussion of disk internals, see Mike
Mayfield's article in the RSTS newsletter, vol. 5, # 1.)

Is it really worth the trouble? Mayfield calculated that the
worst-case file-open takes 5000 disk seeks! This is 4999 more
than the best case; at 30 msec per seek (on an RM03), this is
over two minutes of unnecessary disk bashing. As a less
extreme example, consider an application with an average of
10 accesses per second on an RMO3 disk. If the disk is unstruc-
tured, then each access has an average seek time of 30 msec.
However, if the files are well-placed, each access could be as
short a 6 msec:; this is a total saving of 240 msec. Thus, each
second has had 24% of waiting-time removed, and the overall
system speed could be 24% greater.

B. What this paper is; what this paper is not.

This paper presents some of the issues to consider in
building a disk. This includes analyzing your application, plan-
ning the build and performing it. This is not a cookbook or a
specification of how your disk should look; each environment is
different and requires a different optimization strategy for
disks.

C. What is ‘well-structured’?

The goal of disk optimization (for speed) is to minimize
the number of head accesses and the distance moved on each
access. This means that heavily-used files (such as swap files
and directories) should be placed together, directories should
be contiguous, and data files should be optimized for minimal
directory overhead.

I. Planning

A. Choosing the pack characteristics.

A RSTS disk pack has a ‘pack clustersize’. When a pack has
a small clustersize, the directory overhead goes up (since a
given file is then composed of many clusters). If the pack
clustersize is large then disk space is wasted (there will be an
average of one-half cluster wasted per file). If you have a lot of
transient files (and can afford to waste some space), try using
the next higher clustersize than the required minimum for
your disk.

You can also set ‘new files first’ (NFF) as a pack character-
istic. This means that directories will become more tangled
(and the associated overhead will increase). If you work with a
continually changing set of files, NFF is probably a good idea. If
you have a fairly stable set of files — for example, a general
ledger system — then you may not want NFF. In either case,
use REORDR often to untangle the directories.

B. Finding the center of the disk.

The most heavily-used files should be in the ‘center’ of the
disk. This minimizes the average distance that the disk heads
have to move. Where is the center? Divide the number of



May/June 1980

page 29

RSTSPROFBSIONALRSTSPROFFSSlONALRSTSPROFESSIONALRSTSPROFFSSIONALRSTSPROFESSIONALRS’I‘SPROFESS[ONALRSTSPROFFSSIONALRSTSPROFESSIONALRSFSPROFESSIONALRS’ISPROF&S[ONALRST‘SPROFESSIONALRSTSP

occupied blocks in half (the disk-allocation algorithm does a
good job of filling the disk from the bottom up; this means that
the used blocks are not spread evenly across the disk. For
example, 2000 free blocks on an RKO5 means that 2800 blocks
are occupied; therefore the ‘center’ of the disk is at block
1400.) If you want to check, try using DSKDMP (from the UETP
tape in the 6C kit) on SATT.SYS to see where the occupied
blocks are on your disk.

C. Drawing the disk map.

Decide which files are most heavily-used on your system;
these files should go in the center of the disk. Some of the
obvious candidates are listed below, but each site will have
differing requirements. Decide which files you access the most
often and then draw a disk layout which has these files in the
center.

SATT.SYS: accessed every time a block is allocated or
released (when a file grows or is deleted)

swap files: accessed on every job swap (see SGM (Sys-
tem Generation Manual), p.3-30)

UFDs: accessed at login, logout, and on all OPENS, direc-
tory lookups, RUNs and file deletions

[1,2]library files: accessed implicitly by CCL commands,
by login/logout, and by RUN commands

RTS files: accessed every time a non-resident RTS is
swapped in

OVR, BUFF, ERR (See SGM, page 3-32)
any heavily-used task or data files at your site.

D. Avoiding cylinder boundaries.

For files which are used very often (such as swap files), you
may want to ensure that the file does not cross a cylinder
boundary. This just takes some study of the disk layout (see
the Peripherals Handbook). Crossing a cylinder boundary
requires a repositioning of the head; on an RMO03 this takes 6
msec.

E. Planning the directories.

Directory planning is very worthwhile because blocks allo-
cated to a directory will not be de-allocated (*). Therefore, a
contiguous directory (pre-allocated) will stay contiguous.
(Note, however, that even a well-built UFD should be
REORDRed often.) Furthermore, the MFD is never touched by
REORDR, so any initial order in the MFD will be preserved — if
the MFD is ordered by account number, it makes SYSCAT
listings very easy to read. Create an ACCT.SYS file with account
numbers, ordered, in it.

Decide how big you want each directory to be. How many
accounts will you have? This determines the MFD size. How
many files (and how many clusters per file) will you have in each
account? This determines the UFD sizes. After choosing the
directory sizes, divide each size by 7 and round up to a power of
Z: this is the clustersize that the directory should have. For
more detailed information on directories, see Mayfield's arti-
cle; for general guidelines, read SGM on DSKINT (page 3-7).

Finally, you may want to order the files in [0,1] and [1,1].
These accounts are never reordered and therefore the initial

ordering will be preserved. This is only worthwhile if you have a
lot of files in these accounts.

II. INIT

A. DSKINT

During DSKINT, set the pack clustersize, NFF (if you want
it), the SATT.SYS location and the MFD clustersize. Do not let
DSKINT create the [1,2] library account! Therefore, if you are
creating a public pack, say NO when it asks ‘create library
account?’. Private packs are created properly, but system
packs are a problem. Don't use the SYS option: create the pack
PRI and build your own system disk (see below).

B. REFRESH

Create and place any of the following that you need: swap
files, OVR, BUFF, ERR, CRASH. Create and place a dummy file
(say, PLACE.UFD) to take up room and force the UFDs to
occupy whatever part of the disk you have selected.

If you are building a system disk, then allocate and place
INIT, the SIL and the BASIC run-time system. It is hard to build
a structured disk if this is the first sysgen; generally this should
be done after you have generated a running system. You will
need to know the sizes of INIT, your SIL and the BASIC RSTS.
(An additional complication during the first sysgen is that
COPY places INIT.SYS too low on the disk to allow the MFD to
be pre-extended.)

IV. Building the Directories
A. MFD

Run $REACT on your ACCT.SYS file and enable the
accounts, Pre-extend the MFD by enabling dummy accounts
until the MFD is full (this happens when the MFD occupies 7
clusters); then delete the dummy accounts. Ideally, this is all
done from a running system on a different disk: if you have only
one disk then you must run the program from a tape. The
disadvantage of this method is that a temp file will be created
on the disk you are using; the temp file may get in the way of
the directories you want to create.

B. UFDs

UFDs are pre-extended in a similar way to the MFD. OPEN files
in each account, until the UFD is full, and then delete the files.
The files should be zero-length (name only) so that no other
disk space is allocated while the directory is being built.

The easiest way to do this is to have a program read the
ACCT.SYS file. On each account it should OPEN dummy files
until the directory is full; then it should kill the files. When
you're done with this, delete PLACE.UFD.

V. The System-Recovery Medium

A. Minimal RSTS systems.

If you are building a non-system disk then it should be
saved at this point (see V. B, below). If you are building a
system disk, you have nearly created a crash-recovery medium.



page 30

May/June 1980

RSTSPROFESSIO NALRSTSPROFESSIONALRSTSPHOFFSSIONALRSTSPROFE’SSIONALRSTSPROFESSIONALRSTSPROFF.SSIONALRS’TSPROWSSIONA[,RSTSPHOFFS‘SIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

To make a crash-recovery mediurn, you must first finish
building a minimal RSTS system. First put INIT.SYS, the SIL,
ERR and BASIC.RTS into the files you have already created (this
should be done with the /UP switch in PIPSML or PIP.SAV).
Then make the pack bootable, using HOOK.SAV (see the
RSTS/E software dispatch, article 16.1.2).

Boot the disk, INSTAL the monitor and tailor it. Install
(and place) the BACKUP package (or whatever you use for file
save/restore). It's a good idea to put UTILITY and UTILT1 on
the disk, too. This is now a minimal RSTS system.

B. Building the recovery medium.

Make a copy of the disk. Use an image-mode copy utility
(that is, ROLLIN or the SAVE/RESTORE facility that will be
coming with version 7.0 of RSTS). If the disk you just copied was
the system disk, then you have make a ‘system recovery
medium’. Whether or not the disk is a system disk, you should
make and save a copy.

C. How to use the recovery medium.

If you have a catastrophic disk error, and lose the system
disk, you now have a relatively simply recovery method. Copy
the system recovery medium onto a pack; this gives you a
minimal RSTS system on a well-structured disk. Then run
BACKUP, read in the files from your archive tapes, and you
have your system back on the air.

VI. Installing Files

A. Contiguous files.

Contiguous files have minimal directory overhead but can-
not be extended. Task images (.BACs, .SAVs, .TSKs) are highly

1 EXTEND

CONTIG

- = == G P

5
6 IF Y$ <> 'Y' THEN M% = 0% ELSFE
7 INPUT 'CLUSTERSIZE <256>: ';C%
8 C% = 256% IF C% = 0%
10 . INPUT 'FILESIZE TO TRY FOR: ';F
11 GOTO 10 IF F = 0 &
\F=F - 65536, IF F'> 32767.
!
20 PRINT 'FILE NAME: °;
\ INPUT LINE F$
\ F§ = CVTSS$(FS$,~18%)
1
2 GOTO 20 IF FS$S = °?
30 OPEN F$ FOR OUTPUT AS FILE 1%,
40 CLOSE 1%

50 END

UTILITY TO CREATE CONTIGUOUS FILES - RDM 1978

INPUT 'TOP OF DIRECTORY <Y/N>:';
M

suitable for contiguous files. A patch in BACKUP could allow
automatic contiguous creates for task images. . .

B. Clustersize optimization.

A file that fits in 7 clusters (or less) also has minimal
directory overhead. The disadvantage of this approach is that
the file will have, on the average, half a cluster wasted. The
advantage is that the file can be extended (note that PIP will
not automatically preserve clustersize on a file copy operation
— you must explicitly do so in your commands or in your
application programs).

You may have files that you want clustersize optimization
for. This is hard to do with BACKUP. To kluge around this, you
could make a BATCH job or indirect command file which copies
the files with explicit clustersizes.

C. File placement.

It is bothersome to place files with RSTS 6C or earlier; use
dummy files (created by REFRESH) to control file location. The
rules of disk-space allocation are: first block of a file located as
low as possible (starting at the bottom of the disk); successive
blocks are allocated as low as possible (starting with the last
block now in the file).

Starting with RSTS version 7.0, we will have explicit mech-
anisms for file placement.

(*) That is, directory blocks are not released when files are deleted.
However, the DELETE function in REACT, and the /ZE switch in PIP will
de-allocate directory blocks: don't use these functions. If you do, then
the work you've done to structure the UFD will be lost.

22

¥

= 1536%

ey}

22 @2

CLUSTERSIZE C%, FILESIZE F, MODE 16%+M%



May/June 1980

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRST! 'SPROFESSIONALRSTSP

LETTERS TO THE RSTS PRO . . .
. continued from page 6

Dear Sirs:

Regarding your “What is this?” on page
64, Vol. 2, #1. Could it be a Binary Clock?
(Time 3:51:14.)

Keep articles like RSTS Directories
[Vol. I, No. 1, p.30 and Vol. 2, No. 1, p.45]
in your plans for future issues. They’re a big
help in understanding RSTS.

Sincerely,
Steve Huth, Systems Manager
Computer Tech, Pittsburgh, PA.

Congratulations, Steve! Yours was not
only the first correct answer, it was the first
answer at all.

Scott Banks and Disk Directories are
not in this issue but will be with us again in
coming issues.

Sirs:
The item on page 64 is a clock which
reads 3:51:14 as the time.
Jim Isaacs
Kentucky Machinery Inc., Louisville, Ky.

Dear Dave:

Congratulations on your new magazine.
There has been a longtime need for a maga-
zine like yours.

In regards to the picture on page 64 and
what it is: It is a clock and it says 3:51:14.
Probably PM as I would not wait around
until almost 4:00 AM to take a picture of
the darn thing.

What’s the prize?

Yours very truly,
Kurt McRae, Vice President
Computers Unlimited, Inc., Billings, MT.

Dear RSTS PRO People:

The device on page 64 of the February-
March issue of TRP is clearly a Binary
Clock (BI-KRON), and it appears to say
“3:51:14” though I see no indication of AM
or PM.

It is too bad that I didn’t get to see the
issue until today, because I am sadly cer-
tain that I must be about the 55th personto
give you the answer . . .

Cheers,
Jon Singer
Colorado Video, Inc., Boulder CO

Cheer up Jon, you were 4th!

Dear Mr. Mallery,

The second issue of the RSTS Profes-
sional came last week. It is a pleasure to
read articles geared towards a specific
audience of which I can proudly say I am
one. Your fine magazine has been shuffled,
routed, re-routed and it appears to have
been dropped in the snow before making it
to my desk. If wear and tear is indicative of
readership then you’ll do well.

The quiz picture on page 64 caught my
interest. It appears to be a binary clock
reading 3:51:14. If my guess is correct then

I will pray that my prize is a free subscrip-
tion. It would be nice to have a clean copy
in the office. One last thing. My congratu-
lations to you for having on your contribu-
tors staff Mr. Scott Banks. His articles on
the internal directories have been informa-
tive and most importantly readable. Good
luck to you all.
Sincerely,
Peter L. Hart, Coordinator
Administrative Computing
PSC, Plymouth, N.H.

Your prayers are indirectly answered. Your

prize is not a free subscription, but our free
T-shirt will be a reminder for you to order
your subscription!

Gentlemen:

In answer to your question, the box of
lights is a binary clock. The time shown is 3
hours 51 minutes and 14 seconds.

Sincerely,

Neil V. Sibley

Senior Programmer/ Analyst

The Federal Land Bank of Spokane
Spokane, WA

RSTS Professional
Re: p.64, Vol. 2, Num. 1
It’s a clock:
3:51:14
You didn’t mention whether one had to
be the first to answer.
Mark Emerson, Analyst/Programmer
SPU Computer Services, Seattle, WA
P.S. Tim’s Wrong!

RSTS Professional
Re: p.64, Vol. 2, Num. 1
It’s a clock:
3:58:42.
You didn’t mention whether one had to
be the first to answer.
Tim Rue, Operations Manager
SPU Computer Services, Seattle, WA
P.S. Mark’s wrong!

Mark, you're right, Tim’s wrong. Tim
you’re wrong, Mark’s right.

P.S.You're both right in that we didn‘t
mention whether one had to be the first to
answer. Mark A. knows what we did say.

Gentlemen:

The object on[op.cit.] is plainly a binary
clock displaying the time 3 hours, 51 min-
utes, and 14 seconds. Send prize to: Perry
Locke, Hughes Aircraft Co.,. ., Fullerton,
CA
[sic]P.S. RP articles are fair but the car-
toons lack both humor and profession-
alism.

Sincerely,
Perry Locke

Dear Perry, Mark and Tim are right,
you’re wrong! The P.S. goes after the
closing.

page 31
“RSTS Prof.”
Page 64, FEB/MAR 80.
3:51:14.

C.H. Haring, President
Computer Hardware
Maintenance Co., Inc.
Newtown, PA

Dear Mr. President:
We heard what was said, but what’s it all
about!

Dear Sirs,

I noted with great interest your “con-
test”. I have therefore determined that the
object in question is a BCD clock reading
12:58:52. Since you specified that
ANYONE who can guess what the object is
will receive a prize, I eagerly await your
response.

Sincerely,

Mark Anacker

SPU Computer Services, Seattle, WA
P.S. Both Mark and Tim are wrong.

Dear Mark A.,

Re: Mark E. and Tim, you’re both right
and wrong.

Re: Perry, you’'re right.

Re: Your free prize, you're wrong!

Dear Mr. Marbach,

I gather from the name on the mystery
panel that the device is a binary chrono-
graph (Bikron). If this is the case, I suspect
that it says “12:58:42”.

When it comes to clocks, I prefer the
KWI1I-L.

Sincerely,

Rick Richmond, Systems Officer

Pikes Peak Library District

Colorado Springs, CO

P.S. Many thanks for your fine magazine.

Dear Rick, your time is in the wrong zone,
but at least your P.S. is in the right place.

Dear Sir:
The answer to the question is: 1) it’s a
Binary Clock, and 2) it says 3:51:14.
I will be anxiously awaiting my prize.
Thank you,
Jim Corkey
Spokane, WA

This is a binary clock with the time of 3:51:14.

William E. Elstermeyer

SLT Warehouse Co., St. Louis, MO

We received this one on May 17. That'’s late

enough. We'll have to say that William is the
last winner.

Now that we've ended that contest, perhaps
the folks at SPU Computer Services, Se-
attle Pacific University, can get back to
work!

Send letters to: Letters to the RSTS Pro,
P.0. Box 361, Fort Washington, PA 19034.



page 32

May/June 1980

RSTSPROESSIONALRSTSPROFESSI0NALRSrSPROFESSIONALRSTSPROFF.QSlONALRSTSPROFESSIONALRmPRoFEssmNALRsrsPROFFssloNAmsrsPRomsIONALnsrspﬁomsromLHSISPROFESSIONALRerPROFFssmNALRsrsp

PLEASE IGNORE
THIS NOTICE

By Joel Schwartz, M.D.

EVERYBODY loves to take a chance. Not you? You're

reading this article aren’t you?! Freud once said, “Every human
being is inherently born with the organic and physiologic com-
ponents necessary for the formation of a complicated internal
system which, under the proper conditions, can lead them to
situations involving chance." Unfortunately, no one understood
what he meant and the elucidation of why individuals involve
themselves in situations of chance continued to be mystery.
However, this article will shed no further light on that mystery.
It will deal with six games of chance found in the computer.

Russian Roulette, the first and simplest, takes one min-
ute to play and twenty seconds to forget. The directions are
easy. Here is a revolver. Hit 1 to spin chamber and pull trigger,
hit 2 to give up. There’s not much more to it and if I tell you
what happens, you won't get fooled into playing it like I did, so
I'll go right on to the next game.

Roulette. In order to play this game, you need a six-week
intensive course to learn to understand the directions. There
are fifty possible deaths and I'll bet you'll give up before you

play.

Moving right along, there’s Black Jack. It is just like the
real game, including doubling down, splitting pairs and endu-
rance. It was so real, in fact, that after fifteen minutes | had
lost $1,000.

The fourth game | played was Craps. Sometimes the
computer rolled the dice and you bet on the times it was vise
versa. | got bored of the game after about ten minutes, but if
you like Craps, | guess you'll like this.

The fifth game was Keno. Keno is a game where the
player chooses eight different numbers, from 1 to 80 inclusive,
and bets $1.20 on each. The computer then selects 20
numbers and compares them with yours and you win for each
match. The game would have been terrific if the programmer
had not been fixated on ringing the bells. Unfortunately, as the
computer searches out the 20 numbers and then matches
them with yours, the bell rings incessantly, forcing you to pop
Excedrin, salivate intensively or reach for Control C.

The last game was the one I liked the best. Horses is a
racing game involving a horse. The odds are posted at the
beginning of the race and after you place your bet you can sit
back and watch your horse fall farther behind. I played 10

times and lost $100. The price of admission was right and
there was no fighting traffic to get on the expressway to go
home.

In conclusion, I have a letter here from a lady from Madi-
son, Wisconsin who writes,

Dear Dr. Schwartz:

Would you please show us a picture of you without your
mask on?

Sincerely,

Eleanor Schwartz
Madison, Wisconsin



May/June 1980

page 33

RSTSPROFESSIONALRSTSPROFF.SSIONALRSTSPROFFSSIONALRSTSPROFBS!ONALRSI‘SPROFESIONALRS’ISPROFFSSIONALRSI‘SPROFFSSIONALRST‘SPHOFE‘SSIONALRSI'SPROFESS[ONALRSI‘ SPROFESSIONALRSTSPROFESSIONALRSTSP

MUMPS as a Language

By Peter Clark

MUMPS which stands for Massachusetts General Hospital
Utility Multi Programming System was developed as a tool for
handling clinical and laboratory data in a time sharing environ-
ment. The language (first developed in the mid 60's) although
developed in the medical community, is a general program-
ming language which is a valuable tool in many fields. However,
being developed at MGH, it has gotten wide acceptance in the
medical area.

MUMPS has several features which make it very useful as
a language for developing data base systems.

1. Powerful string handling and pattern matching

2. Simple access of data in data base

3. Several types of indirection

4. Interpreter

String Capability
There are 5 string operators used in the language.

1. “_" Concatenation i.e. A_B will concatenate string B to
string A.

2."=" String equality.

3. “[" String follows, i.e. A[“XYZ" returns “TRUE" if string
A contains the string “XYZ".

4."]" String follows, i.e. AIBreturns “TRUE" if the string A
follows (alphabetically) the string B.

5."7?" Pattern match. This operator allows checking for
patterns of upper case, lower case, numeric, etc. char-
acters in a string.

Example: A?3N1"“—""2N1"—"4N returns
“TRUE" if string A is in NNN—NN—NNNN format.
The following string functions are also part of the

language:

1. SEXTRACT Extract substring from a string. The begin-
ning and/or ending positions of substring within main
string are specified.

2. SFIND Returns end position + one of a substring within
a string.

3. SJUSTIFY Returns a value of an expression right justi-
fied within a field. Used for formatting numeric values.

4. SPIECE Selects a substring from a string between spec-
ified delimiters.

Data Base Access

Variables in a data base are accessed in the same way as
other variables except the variable name is prefixed by an
wop

Examples:

SET 4 A=1 ;sets “global” variable A = 1.

SET 1 A(1,2,3) ="XYZ" ;sets “global” variable A(1,2,3) = to
;string “XYZ"

SET B= 1 A ;sets “local” variable B = “global”
;variable A.

Global (and local) variables may have any number of sub-
scripts. There are functions in the language for returning next
subscript at any level, information about any node (i.e., does it
contain data, pointers, etc.). MUMPS arrays are sparse arrays,
i.e., every element of the array contains a pointer. This allows
one to have a very wide range of subscripts without pre-
allocation of a large amount of space as required by other
languages (DIM in BASIC).

The multiple levels of subscripts allow the data base
designer to minimize disk accesses for any node in the data
base.

Indirection

MUMPS allows the programmer to use several types of
indirection.

1. Argument indirection
Example: the sequence
SET X="A=2+Y",Y=2
SET @X
will set the variable A=4.
2. Name indirection
Example: the sequence
SET X="B"
SET @X=2
will set the variable B = 2.
3. The EXECUTE command will allow you to interpret an
entire command line.

Example:
SET X="SET Z=1+2"
XECUTE X

will set the variable Z = 3.



page 34

May/June 1980

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

These indirection capabilities are very powerful tools for
developing general inquiry programs, computer assisted
instruction applications, etc. The fact that MUMPS is an inter-
preter makes this type of flexibility easy to provide in a
language.

Interpreter

Since MUMPS is an interpreter, program development is
much easier and faster than with a compiler. The developer
doesn't have to wait for lengthy compilations and linking. Using
breakpoints and examining variables during execution is easy
to provide for the programmer. The indirection features men-
tioned above are also provided easily because MUMPS is an
interpreter.

MUMPS allows the programmer to abbreviate all com-
mands to a single letter. You can have multiple commands per
line and most commands allow multiple arguments. A sum-
mary of the STANDARD MUMPS commands follows:

BREAK  Stop execution (i.e., breakpoint)

CLOSE Close file, release device

DO Begin execution at specified address. Return when
QUIT executed. Can call routines from an external
device.

ELSE Execute rest of command line if STEST is true.

STEST is set to true or false by the IF command or
postconditionals (see below).

FOR Specify repeated execution of commands following
in the same line.

GOTO Transfer control to specified address.
HALT Suspend execution.
FAST DELIVERIES SYSTEMS
REASONABLE PRICES MEMORIES
FULLY WARRANTEED PERIPHERALS
RINMITIN I TERMINALS
MODULES
CALL
GEORGE PERLEY
AT
BROOKVALE
ASSOCIATES

(800) 645-1167
N.Y. (516) 567-7777

40 Orville Drive
Bohemia, N.Y. 11716

A prize
if you can tell us

exactly!

What is going on here?

-

WordProcessing*

for
RSTS/E

M Systems provides:
® Sales
® Service At your '
} , convenience!
® |nstallation
® Demonstrations At your
® Training office!
e Consulting

(215)643-3128

753 JOHNS LANE, AMBLER, PA 19002

*Word-11 by Data Processing Design, Inc.,

181 W. Orangethorp Avenue, Placentia, CA 92670 J

HANG Suspend execution for specified number of
seconds.

IF Execute rest of command line if “IF"" expression is
true.

KILL Remove specified variables from internal symbol
table or global area.

OPEN Obtain ownership of device.

QUIT Exit a DO,FOR or EXECUTE command.

READ Read data from current device.

SET Assign value to specified variable.

USE Designate a specific device to be used for “current”
device.

WRITE Output data and/or format control to “current”
device.

XECUTE Interpret MUMPS code during execution.

Most commands can be post-conditionalized to be exe-
cuted only if the post-conditional expresion has a value of true.
EX:
SET:Y=1 X=1
This will assign the value 1 to X if Y has a value of 1.
Otherwise the command will be ignored.

In the next issue | will discuss an implementation of
Standard MUMPS on a DEC SYSTEM—10. Unfortunately
MUMPS is only available on DEC 11's in a single language
environment. There have been rumors from DEC that they
would develop MUMPS to run under various 11 operating
systems but | doubt that will happen now that there is such an
implementation by DEC for the VAX.



May/June 1980

page 35

RSTSPROFFSSIONALRST‘SPROFESSIONALRSTSPROFBSIONALRSTSPROFBSIONALRSTSPROF‘BS!ONALRSTSPROFEBSlONALRSFSPROFF.SSIONALRSTSPROFESSIONALRSTSPROFESSIONALHSTSPROFBSIONALRSFSPROFF_SS[ONALRSTSP

DECUS-PLUS

or, Independence for the RSTS Community

By Howie Brown and Monica Collins*

Here in RI, nearby Mass and Conn, an exciting experiment is
underway — the building of a viable RSTS users group INDE-
PENDENT of DEC's official user structure, DECUS. SENERUG —
the Southeastern New England RSTS Users Group — reflects
the belief that a group of users can best serve its members
by: 1) aggressive recruitment and active participation of user
members; and 2) avoiding a paternalistic relationship with
DEC.

Though apparently new to the RSTS community, inde-
pendent user organization is an accepted fact of life elsewhere
in the data processing world. System 32 users, for example,
maintain the SHARE users group independently of IBM. Sim-
ilarly, the HP General Systems Users Group specifically
excludes Hewlett-Packard financial support and discourages
participation by Hewlett-Packard employees.

What, you may ask, is wrong with the DECUS arrange-
ment? In short, reliance on DEC's financial support and good-
will. Ask a DECUS officer why vendors of compatible hardware
and software don't get invited to set up displays at DECUS
symposia. Chances are, the answer will run like this: Whatever
benefit might accrue would be outweighed by the potential
jeopardy to the “special relationship” between DEC and
DECUS.

There is a growing feeling here that the “special relation-
ship™ does all of us, RSTS users and DEC alike, more harmthan
good. When RSTS users come together the conversation inevit-
ably turns to what's wrong with DEC, and the complaints seem
to have a common basis: Digital's lack of response to its own
market. Certainly DEC's sales position could tempt any corpo-
ration to take its market for granted. But (although compari-
sons are admittedly dangerous) one should point out that in
spite of its dominant market position, giant IBM is unarguably
market-driven.

Here is the root of the matter: what is wrong with DEC-
supported user groups is that they REINFORCE DEC's unres-
ponsiveness by discouraging user exposure to hardware and
software not labeled DIGITAL. If DECUS organizes true “user”
symposia, why are displays of compatible hardware and soft-
ware excluded? And why are uncomfortable issues raised by
users so often tabled into oblivion?

When the charter members of our organization first met
6 months ago to draw up the by-laws, the question of DECUS
membership was addressed, and the overwhelming majority
felt that they would be better served by an independent users
group. SENERUG members are excited by the prospect of
giving equal time to all hardware and software vendors of

interest — DEC included, but not DEC alone. In the past, many
of us had needs that DEC failed to meet adequately. For
example, the long-awaited replacement for the discontinued
VT52 terminal with printer controller. Explaining our needs to
other vendors will result in a more responsive market for all of
us.

But isn't DECUS support crucial to a local users group?
The success of SENERUG has already answered that question
with a solid “NO". If you're willing to invest some energy and
time in organizing, you can prosper without DECUS. We identi-
fied more than 20 installations in our geographical area, gener-
ated publicity, and now additional sites are making themselves
known to us. With a supportive membership and an enthusias-
tic board, we've organized monthly technical workshops,
including guest speakers, and maintain a software library. The
group does its own mailings, surveys, and record-keeping
funded by modest annual dues.

While DECUS membership was voted out of our by-laws,
cooperation with DEC is considered crucial by all our members.
One of our earliest accomplishments was the establishment of
a line of communication with DEC. When the situation war-
rants their presence, DEC representatives attend our meet-
ings at our invitation. We can claim to have solved specific
support problems for our members through such meetings.
But, by having an organization able to function without ongoing
support from Digital, we avoid worrying about earning DEC's
displeasure at the pressure we might exert on DEC's support
services, or at the attendance of “foreign” vendors at our
meetings from time to time.

DECUS does serve a legitimate purpose as a disseminator
of information between DEC and RSTS users. An independent
user structure can serve another purpose, that of protecting
and advancing the interests of users without regard to special
relationships. So far SENERUG's experience has shown that an
independent RSTS users group is viable, and we believe that
the idea can be applied elsewhere. If we can supply you with
further details, contact us — SENERUG, P.O. Box 3043, Paw-
tucket, R.l. 02861.

*Howie Brown is Chairman of SENERUG and Systems Pro-

grammer for Information Systems, Inc. of Pawtucket, R.I.

Monica Collins is Vice-Chairman and Program Coordinator of
SENERUG and DP Manager for George Mann Co., Providence,
R.I



page 36

May/June 1980

RST: SPROFESSIONALHSTSPROFESSIONALRSTSPROFT:‘SS!0NALRST'SPHOFFSSIONALRSTSPROFESSIONALRSI'SPROFESS!ONALRST‘SPROFBSIONALRSI’SPROFBSIONALRSTSPROFFSSIONALRSTSPROFBSIONALRSI‘SPROFBSIONALRSTSP

? Why TECO ?

By Carl Marbach, Editor, RSTS Professional

IN the last article on How TECO, Martin Pring noted that he
tries to use Q-registers mnemonically by alluding to the fact
that he keeps his limericks in Q-register L. We know that he
keeps them in his head but we did manage to find a person who
has written on structured TECO. Because of the many sessions
that run concurrently at DECUS we didn't have a chance to hear
her talk about it in person, but we did read about it in the
Proceedings published about 6 months after the original talk
(they use a computer no doubt). Jacquie has updated her
original article and you'll find it in the ? How TECO ? section
which follows this.

How is it possible, then, that we can talk about “struc-
tured TECO" if TECO is not a language. Let's do away with any
arguments and set down this author’s premise that:

TECO is a language for manipulation of text. It has a
powerful “immediate” mode which allows on line edit-
ing of text. The language is interpretive on my PDP-11
but compiles on the PDP-10 I occasionally use.

Why do we need (or want) another language? I tell most
of my programmers and other interested parties, that BASIC
PLUS is much like FORTRAN, but more flexible and easier;
similar to DIBOL and COBOL although the syntax and structure

are different; and that when you know one well, the others can
be mastered in a short time. Most of us, in fact, have migrated
from some other language to BASIC PLUS (or others) proving
this theory correct. There are some languages that are UNLIKE
the ones mentioned above. Their very nature is different and
they require different thinking modes and programming
styles. SNOBOL (developed by Bell labs or thereabouts) is one
of these.  once took a programming language course where we
studied Assembly for the 360, ALGOL, BASIC, FORTRAN,
COBOL, MACRO, FOCAL, JOSS (any old PDP-6'ers out there??),
and .....SNOBOL. They were all the same, different syntax, but
all the same except for SNOBOL. WOW! Get a book and see for
yourself; things you NEVER thought about. Well, in some
respects TECO is like that. The concept of an “anchored
search” is lost on a BASIC PLUS or COBOL programmer.
Matches, wildcard matches are cumbersome and unwieldy
in most languages but easy and facile in TECO. Try writing
SQUISH, the TECO macro for removing comments, spaces,
redundent ESC's, and intelligibility from TECO macros, in any
other language and call me next year.

If I can make a plea for TECO, it would be for it as a
language, not an editor.

1280




May/June 1980
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

? How TECO 7?
STRUCTURED PROGRAMMING IN TECO

By Jacquie Stafsudd, Hughes Research Laboratories, Malibu, California

Abstract

The concise nature of TECO's syntax necessitates the formalization of a “programming style” when writing
complex TECO programs. This paper presents the basic ideas of Structured Programming principles, and suggests
standards to help in implementing, debugging, and maintaining TECO programs.

INTRODUCTION

The use of TECO by programmers ranges from a nominal text editing utility to a sophisticated language in which
complex editing functions may be written. These functions can be considered as **subroutines’ which can be stored, later
merged with other editing functions as part of a larger program, and driven by a mainline command string. The TECO
“subroutines” are referred to as “macros”, in that they are sequences of commands used to perform specified functions.

As a programmer attempts to create larger and more complex TECO macros, he is soon met with the obscurity that
the concise syntax of TECO provides. The very nature of TECO's succinct command stru~-ture, where almost every ASCII
character can represent a command, acts as a barrier to readability, understanding, debugging, or error free modifica-
tion of all but the simplest macros by all but the most advanced TECO programmer.

Therefore, the utmost care and forethought must go into the writing of TECO macros to minimize programming
errors and maximize program utility. Not only should these “subroutines” be thoroughly documented internally, but
their structure should be as straightforward and understandable as possible.

The philosophy of Structured Programming as originated by E. W. Dijkstra meets the need of the TECO pro-
grammer. This paper attempts to provide an understanding of the principles of Structured Programming and apply
those principles to the programming structures native to the TECO language. In particular, this paper focuses on the
TECO-11 syntax and does not attempt to cover specifically all versions of TECO, although many of the Structured
Programming techniques will still apply.

page 37

STRUCTURED PROGRAMMING
PRINCIPLES

The goal of Structured Program-
ming is to organize and discipline the
program design and coding process in
order to prevent most logic errors,
make programs easily understood, and
permit error free modification and
maintenance. Structured Program-
ming has three major characteristics:

1) Top down design
2) Modular programming
3) Structured coding

Top Down Design

Top down program design starts
with a clear and precise statement of
the problem and a determination of the
major tasks involved. Then each of the
major tasks are, in turn, subdivided into
small modules until each module
represents a distinct function that can
be easily comprehended.

Next, the data structures must be
defined and the major processes to
which the data will be subjected must
be described. And finally, the program
should be documented while still in the
design phase in order to further clarify
the processing and logic flow.

Modular Programming

If the top down design of the prob-
lem has been properly done, then the
task will have been partitioned into
subtasks that can represent logical
functions. This structuring is intended
to:
1)insure that the actions of each
module are well specified.

2Z)minimize errors by limiting the
complexity of the particular
function being coded.

3)isolate functions from each

other so that the effects of any
change or refinement to that
function will be localized to that
particular module.

The coding of a module should be
such that it has one entry point at the
top and one exit at the bottom. Within
each module, there should be a min-
imum of paths to keep the structure
simple. Following these guidelines will
insure a minimum of complexity, a
smooth flow of logic, and a maximum of
module independence — hopefully
leading to error free programming.

Structured Coding

Structured coding is a method of
writing programs with a high degree of
structure. It is based on some simple
logic structures from which a “proper
program” can be formed. A “proper
program” is one with one entry point,
one exit, and no infinite loops or
unreachable code. The basic structures
needed to write a “proper program”
are:

1)Sequence — the idea that pro-

gram statements are executed



page 38 May/June 1980
RSTSPROFESSlONALRSTSPROFBSIONALRSTSPROFBS]ONALRSTSPROFBSIONALRSTSPROFESSIONALRS'TSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSlONALRS‘!‘SPROFESSIONALRSTSPROFESSIONALRSTSP

PDP* 11 & 11/70
Disk Capacity
Headaches

For Fast Relief ... DMS Disk Sub-Systems
Are The Best Prescription

COMPARE PRICE - PERFORMANCE

RWP 06 DM 70/ 300 =
DRIVE CAPACITY 45%
s 174.4 253.7 ({_,mgR
DATA RATE 45%
% / words  <ec) 337.9 4915 (rasTER
45%
PRICE $44,000. sazom. { <te
RIM 02 DM 11/80
DRIVE CAPACITY
i 67 67 (EQUAL) »
DATA RATE 459%
K / words / sec) 337.9 491.5 (FASTER
45%
PRICE $24,000. $13 350, (LOWER

COMPARE DELIVERY

DATALEASE MEMORY SYSTEMS can deliver and have your
disk sub-system on-line in less time than it takes DEC* to
process an order. (Typically within 30 days)

COMPATIBILITY

DATALEASE MEMORY SYSTEMS offers disk sub-systems that
emulate the RM02, RMO03, RP04, RPO5, and RP0O6. The sub-
systems are completely software transparent and best of
all will run standard diagnostics.

NATIONWIDE SERVICE & SUPPORT

DATALEASE MEMORY SYSTEMS provides installation and
maintenance nationwide through the Engineering Ser-
vices Division of CDC. Our own highly experienced systems
analysts supervise every installation and do not step out
of the picture until you are completely satisfied.

«  Calltoll free 800-854-0350
DATALEASE MEMORY SYSTEMS
DATALEASE i o ok e

In California (714) 632-6986

*PDP and DEC are registered trademarks of Digital Equipment Corporation



How to count
your chickens
before they
hatch.

Surprises can be expensive. Even good news
can cost money if you’'re not prepared for it.

Financial modeling lets you avoid surprises and
allows you to plan calmly for whatever the future
has in store.

FINAR is the financial planning system designed
for businessmen in companies of all sizes.

You don't have to be a computer wizard.

You don't have to be a financial analyst.

You don't have to have a huge computer.

All you need is your own business know-how,
a DEC PDP-11 RSTS computer and FINAR.

FINAR will help you to anticipate variations from
budget, to measure market reaction to future price
changes, and to react to the predicted changes in the
economy before your competitors.

If you'd like to know how to count your chickens
before they hatch, call or write:

Tony Kobine

Finar Systems Limited

132 Nassau Street, Suite 212

New York, NY 10038

(212) 222-2784

FINAR

¢ Copyright 1980. Finar Systems Ltd.




page-40

May/ June 1980

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

in the order that they appear in
the program unless something
is done to change the sequence.

2)Selection — (called IF THEN
ELSE) the choice of two actions
based on some conditional.

3)Iteration — (called DO WHILE)
used to execute a set of code
repeatedly while a condition
holds true.

Schematically, these logical struc-
tures are shown in Figure 1.

In general, although it is possible
to write well-structured programs
using only these three basic logic struc-
tures, programming becomes clearer if
the repertoire is expanded to include
the REPEAT UNTIL and CASE struc-
tures as shown in Figure 2.

The REPEAT UNTIL structure pro-
vides a type of looping similar to the DO
WHILE but differs in that the condi-
tional is checked after the statements
are executed, and the loop terminates
when the condition proves true. The
CASE statement is a multi-branch con-
struction used to select one of a set of
functions for execution depending on
the value of an integer expression.

To help identify these logical struc-
tures within a particular language, the
use of “paragraphing” or “indentation”
techniques should be considered. Para-
graphing refers to the positioning of
code on a page in an “indented”
manner so as to best represent and
identify the logic being used. To apply
these principals to the TECO language,
we must consider the syntax that TECO
provides.

APPLYING STRUCTURED PROGRAM-
MING TO TECO

Preliminary Thought and Design

Much of the discipline of Struc-
tured Programming takes place out-
side the context of the particular
language being used to program. The
top down design specification of the
problem should be done before even
calling up TECO. The amount of fore-
thought put into this preliminary phase
will pay off immediately when coding is
started. This is especially true in TECO,
where the identification of variables,
macros, buffers, and text is limited to
the Q-register identifiers A-Z, 0-9.
Without the ability to use longer mne-

s

(SEQUENCE)

—

(IF THEN ELSE) :

e

N

(DO WHILE)

<>

/

/

FIGURE 1. Basic Logic Structures

Yo

(REPEAT UNTIL)

(CASE)

<2
i

FIGURE 2. Additional Logic Structures

monics to specify the purpose or con-
tent of a Q-register, the significance of
a particular TECO command can be eas-
ily lost or forgotten.

Therefore, once the top down
design has been completed, the assign-
ment of the data areas, buffers, and
macros should be made according to

the Q-registers they will reside in.
Hopefully, this will be done according to
some logical process — if only to store
numbers in Q-registers 09, and
buffers, text, or macros in Q-registers
whose labels begin with a character
somehow representative of their
function.



May/June 1980

page 41

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

TECO Logic Structures

The logic structures shown in Figures 1 and 2 may be
found directly within the syntax of the language, or may be
constructed by using more than one TECO command.

SEQUENCE — TECO command syntax follows the SEQUENCE
principal in that the commands are executed in order of
appearance unless a command is given to branch, loop, or test
for a condition.

IF THEN ELSE — this structure is given directly in the TECO-1 1
syntax. It can be shown in an “indented” manner as follows:

n"X
[THEN-COMMAND ]

|
[ELSE-COMMAND ]

1
A simple example using this structure is:

(0A)"Y
(04-32)I® D

C
'

This command sequence will replace a lower case alpha-
betic character (if it is immediately to the right of the buffer
pointer) with its upper case counterpart. The command is
translated by breaking it down into its component parts as
follows:

(OA) returns the ASCII code of the next character in the
buffer

“V tests IF the value is an ASCII code for a lower case
alphabetic (a-z)

(0A-32)1 @ D is the THEN command which inserts the
upper case equivalent character in the buffer and deletes
the lower case character

1 is the beginning of the ELSE command
C moves the pointer past any non-lower case characters
‘ marks END-IF

DO WHILE — this structure can be set up using the iteration
loop with a conditional LOOP-TEST at the beginning of the
iteration:

< [LOOP-TEST]
[COMMAND-SEQUENCE]
e e o e e e e e
>

An example of the DO WHILE structure is:
< "Nz
HPW HK A
>

This is a macro loop which removes formfeeds from a file.
WHILE the end-of-file flag is non-negative, the current buffer is
copied to the output file (suppressing formfeed), the buffer is
killed, and the next page is appended from the input file. When
the end-of-file condition is met, the loop is exited.

REPEAT UNTIL — can be similarly constructed by using the
looping command with a test at the end of the loop. The
structure is given as follows:
<
[COMMAND-SEQUENCE]
[ e T e e |
[LOOP-TEST]
>

For example, the macro

<
(oa)"v
(0A-32)I® D

C
1
O-Z;
>

uses the IF THEN ELSE code shown previously and puts it in a
loop that is REPEATED UNTIL the end of buffer is reached.

CASE — this construction is now available through the use of
the computed GO TO command. The logic structure for this
command is the hardest to represent clearly. It can be format-
ted as:

nOtaglO,tagl,....,tag!
R PN Nl L ot e Ar ]
fos
1tag0!
'tagl!
'l.‘l'

'tagk! [COMMAND-SEQUENCE]

o e a W e ]

[COMMAND-SEQUENCE ]
[COMMAND-3SEQUENCE]

The following macro makes use of this command to
branch to one of many possible insertion strings. The function
of the macro is to change all occurrences of single digits 0-9 to
their written form. The search string demands that the digit
be preceded and followed by a separator character.

<
LR
R ECHEE
2R (0A-48)U1 D
(Q1)00,1,2,3,4,5,6,7,8,959
|
03
1
10V IZEROQ FK
PT1IONE® F<
1I2VITWOR FK
'3V ITHREEGF <
48 IFOURD F<
ISTIFIVEQ F<
161ISIX® F<
ITVISEVENGF <
I8 IEIGHTEF <
1IGTININE® F<
>



page 42

May/June 1980

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

PROGRAMMING EXAMPLES

Having described the basic forms of structure that can be
applied when writing TECO macros, let us now consider a
complete macro function that can be coded in different ways.
The function of the macro is to search the buffer, replacing
control characters ( - {9 ) and ( M -

) with a 1t and their respective character (A-H),
(N-Z), and to replace all ESCAPE characters with a dollar sign $.
This function is useful in editing TECO macros so that they may
be listed on devices that do not properly handle escapes or
control characters. The first sample of this function is coded
with the basic TECO commands that are available in all versions
of TECO and makes use of the GO TO structure:

< (0A)UT
(Q1=-27)"G
CNEXT®
1

(Q1=8)"G
(Q1=-14)rL
ONEXT®

1
(Q1=-27)"E
D I$® -C ONEXT®

D I® (Q1+64)IQ® -C
!'NEXT! C .-Z;
>
The second sample of this function is written making use
of the TECO-11 flow commands and IF THEN ELSE:

< =7
(0A)U1
(R1=27)"G
C F<
1
(Q1-27)"E
D I$® F<
1
(Q1=8)"G
(Q1=14)"L
C F<
1
]
D IW® (Q1+64)IQ®
1
>

The third form of this function is written using the CASE
construction:

< =l g
(0A)UN
(Q1)0A,B,B,B,B,B,B,B,B,A,A,A,A,A,
B,s,8,8,8,8,8,B,8,B,B,B,B,0®
TAY C FK

IB! D I® (Q1+6L)IQ F<
1C1 D I F<
>

It should be noted that in the above computed GOTO
command, there should not be a carriage return or spaces
between the referenced tags (this was just done to fit page
restrictions).

The execution timing of the function differs greatly
depending on which coding technique is employed. It was found
that the first sample using the GOTO code took approximately
three times as long as the IF THEN ELSE construction, and the
CASE sample took about 1%z times as long as the IF THEN
ELSE. It should also be noted that when using the IF THEN
ELSE construction, the path that is followed most frequently
should be the THEN path, rather than the ELSE path, in order
to minimize execution time.

Complete Examples with Comments

TECO programs often lack sufficient comments describing
their purpose, the way to invoke them, the Q-registers used, or
the logic being followed. These items must be commented to
allow others to understand and use the programs. The prob-
lem with comments in TECO, is the fact that TECO does not
recognize the difference between comments and labels, and
therefore slows down its execution of macros when comments
are included. To avoid this problem, the comments should be
removed before executing the macro. A macro suited for this
purpose is shown in Figure 3. The macro is highly ‘structured’,
using many of the techniques recommended. Note that its
function and execution are well commented, including com-
ments that the macro itself writes out to the terminal. It
notifies the user of the form of comment that it will remove
and also writes out a message to the terminal when it is
finished executing. Although it does not have a great deal of
control logic necessary internally, its main loop is readily iden-
tifiable as a DO WHILE loop with a primary IF THEN ELSE
structure controlling the deletion of comments.

Figure 4 shows the macro INPUT which will accept charac-
ters typed from the keyboard and insert them into the TECO
buffer. It supports control-R (repeat line), control-U (delete
line), control-Z (exit), RUBOUT or DELETE (delete last charac-
ter typed), and carriage return or ESCAPE (exit).

This macro contains a great deal more internal use of logic
structures. It was easy to write and debug primarily because of
its use of indentation techniques that made the format of the
IF THEN ELSE commands stand out. Note that neither of the
examples needs a GOTO label because of the use of the struc-
tured logic forms.

CONCLUSION

For complex editing functions TECO is well suited, but the
obscurity of the language’s syntax must be treated with care
to obtain the maximum efficiency of both the programmer’s
and machine’s time. We have shown that TECO contains the
syntactical capabilities for structured coding techniques. If
properly utilized, these techniques along with proper labelling
and commenting conventions, allow the programmer a clearer,
more readable way to write TECO programs and in turn enable
the programs to be debugged or modified more quickly and
efficiently.



May/June 1980

page 43

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

'¥ TECO macro: COMOUT.TEC
This macro removes comments from TECO macros by allowing the
user to define the difference between a label and a comment. The
string that starts a comment (beginning with an exclamation point)

can be any length; it is defaulted to be an exclamation point followed

by an ¥, Similarly, the string that ends a comment can be any length
but must end with an exclamation point; the default is an ¥ followed
by an exclamation point. The macro will NOT remove comments starting
in cclumn 1.
The macro uses the following Q-registers:
A - holds the start-of-comment string
B - holds the end-of-comment string
1 - points to beginning of current line
To execute this macro:
Load Q-registers A and B with your comment conventions if you
want to override the default settings, put the macro to be acted upon
in the buffer and execute the EI command as follows:

EICOMOUTGD
%1
EI®
:QA"E 1¥ TF no comment string provided
“UAND TUAYND ' THEN set up default comment format
~UB*@® :~UB!®
1

“ACOMOUT will remove all comments with the format:
:GA "TA comment CB :GB TA

< STEQAD; !'¥ LOOP-TEST:search for start-of-comment
(.=-:QAYUT OL '¥ save start position; move to beginning-of-line
(Q1-.)"E !'¥ TF comment starts at beginning-of-line
CF< ¥ THEN go to beginning-of-iteration

)

I
STEQE® (Q1, .)K '¥ ELSE find end-of-comment and kill it

1

>

AN RXEXDONE®EHF

)

FIGURE 3.

%1
%1

%1
%1
*1
%1

Be sure you subscribe NOW to insure that you will receive the next issue of the RSTS PROFESSIONAL.
® Only %20 per year for 4 issues ® Handy postage-paid subscription cards attached-give one to a friend!
® Pay now or later ® Get a FREE classified ad with paid subscription

O

LETTERS to the RSTS Pro .. ..
. . . is YOUR column! Send us your comments, suggestions, or notes of interest to the RSTS community.
We’d enjoy hearing from you.

Back Issues are now available. Have a complete set of the RSTS PROFESSIONAL.
Every issue contains valuable information you will want to have on hand or to give away to a friend.
You've only missed two issues as of this publication. Order now while it's easy.
See the postage-paid cards and subscription blanks throughout the magazine for further information.
(Back Issues: Vol. 1, #1, Vol. 2, #1, Vol. 2, #2, $7% per issue if paid in advance, $10 per issue if billed)




page 44

May/June 1980

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

¥ TECO macro: INPUT.TEC

This macro accepts characters from the terminal and inserts them
into the buffer. The input stops when the user types a carriage return,
a ctrl-Z, or an ESCAPE character. A ctrl-R causes the character string
to be typed out to the user; a ctrl-U deletes the character string from
the buffer; a DELETE or RUBOUT deletes the last character typed.
The following Q-registers are used:
1 - contains original buffer position
T - temporarily holds input character

1. Basili, Victor and Baker, Terry, Structured Programming
Tutorial, IEEE, 1975.

2. Cheatham, T.E. and Townley, J.A., “A Proposed System
for Structured Programming” in Programming Symposium,
edited by B. Robinet, Springer-Verlag, 1974.

3. TECO User's Guide and Language Reference Manual,
TECO SIG, March 1979.

4. VanTassel, Dennie, Program Style, Design, Efficiency,
Debugging, and Testing, Prentice Hall, 1978.

*1
U1 !¥3ave initial buffer position¥!
<
“TUT '¥grab character into T¥!
(QT-27)"G '¥IF not a control character*!
(QT-127)"N '¥TF not a DELETE*¥*!
QTI® FK '¥*THEN insert into buffer¥!
!
I .
(Q1=-.)"E !*¥*ELSE IF there are no char to delete¥!
7°T F< I¥*THEN send BELL*¥!
1
(ET&2)"G 1¥TF a crt#*!
8°T 32°T 87T '¥THEN send bs-sp-bs¥*!
I
|
(D 1T I*ELSE no crt send \char#!
1
-D FK<
1
| '*#*FLSE (a control-char)¥!
(QT-13)"E 1¥TF a cr¥!
“TOT O '¥THEN grab 1f and exit loop¥*!
1
(QT-27)"E 1¥TF esc¥!
05 '¥*THEN exit loop¥*!
1
(QT-26)"E 1¥]F ctrl-7%!
0; '*THEN exit loop¥*!
1
(QT-21)"E 1¥TF ctrl-U%*!
(Q1,.)K 13T 10°T FX I¥THEN delete line¥*!
1
(QT-18)"E 1¥TF ctrl-R¥!
13°F 10°T (@1, .)T '¥*THEN retype line¥*!
)
QTIO F< 1¥A11 else insert in buffer#*!
1
>
FIGURE 4.
REFERENCES

5. Zann, Charles T., “A Control Statement for Natural Top-
Down Structured Programming” in Programming Sympo-
sium, edited by B. Robinet, Springer-Verlag, 1974.

6. Stafsudd, Jacquie, Structured Programming in TECO,
Proceedings of the Digital Equipment Users Society, Fall, 1979.

7. Stafsudd, Jacquie, Adding Structure to TECO Programs,
Proceedings of the Digital Equipment Users Society, Spring,
1980.



May/June 1980 page 45
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

An Open Letter . . .

TO:  RSTS Community

FROM: Jerry Kiestler
The University of Tennessee at Martin
Computer Center
Martin, TN 38238

RE: Spooling Package Task Force

At this past DECUS Symposia in Chicago, a task force was established to work on developing a document of
the requirements that the spooling package on RSTS needs to meet in order to satisfy user needs. Due to the large
number of wish list items which had been submitted at past Symposia concerning the spooling package, it was
obvious that something needed to be done.

It is hoped that the task force will be able to develop a functional specification for a new or revised package. In
order for this to be successful we will need the cooperation of as many RSTS users as possible in supplying us with
input in the form of suggestions, complaints, wishes, etc. ANY user not satisfied with the current spooler system
should send the task force any input they have on the topic.

At the Chicago meeting there seemed to be a very large majority who were dissatisfied with the package's
current state, therefore, PLEASE send us your input.

We will try to put together a general outline of our initial findings for publication in the RSTS newsletter as
soon as we can gather and sort the material.

RSTS/E SOFTWARE PACKAGES

m KDSS, a multi-terminal key-to-disk data B COLINK, a package that links two RSTS/E
entry system. (Also available for RSX-11M.) systems together using DMC11s. Supports
file transfers, virtual terminals, and across-the-

B TAM, a multi-terminal screen-handling link task communication.

facility for transaction-processing applica-

tions. (Also available for RSX-11M.) B DIALUP, a package that uses an asynchro-
, nous terminal line to link a local RSTS/E
B FSORTS, avery fas_t sort. Directly sorts system to a remote computer system. Sup-
RSTS/E files containing up to 16 million ports file transfers, virtual terminals, and
keys or records. Up to 70 times as fast as dial-out through a DN11.

the RSTS-11 Sort package in CPU time.

(The performance-critical portions of the first
five packages are implemented in assembly
language for efficiency.)

B SELECT, a convenient, very quick package
for extracting records that meet user-speci-
fied selection criteria.

Evans Griffiths & Hart, Inc.

B BSC/DV, a device driver for the DEC DV11 BB Waitham Streat
synchronous multiplexer that handles most Lexington, Massachusetts 02173
bisynchronous protocols. (617) 861-0670




page 46

May/June 1980

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

BASIC-PLUS AS AN ENVIRONMENT FOR THE
IMPLEMENTATION OF THE NAIVE USER INTERFACE IN A
HIGH-LEVEL PROGRAMMING LANGUAGE

By Tony Kobine and Ed Taylor, Finar Systems Limited, New York, New York

- ABSTRACT

FINAR, Financial Analysis and Reporting, is a language that has been designed to carry out a wide range of
functions in financial modeling and budgeting. The system has been designed to fulfill some specific objectives,
including that of being easily operated and understood by a completely inexperienced user after the minimum of
instruction. Examples of techniques which achieve this are given.

In addition, because of the way in which FINAR is implemented, in BASIC-PLUS under RSTS/E, it is possible to
make the operation of the computer itself almost transparent, which means that such functions as error-trapping
and correction can be handled by the FINAR package itself. At all times, the naive user has complete control over
the progress of his runs and is kept informed of what is happening next, in financial analyst's language rather

than programming terms.

NEED FOR THE NAIVE USER INTERFACE

The Financial Modeler

The computer age has brought important benefits to our
lives, not the least of which is that the authors and also most of
the people who will read this paper make their living from
computer technology. Everyone is affected by developments in
data processing.

These developments have been paralleled by an unfortu-
nate side-effect: the invention of a bewildering array of jargon,
with a corresponding gap in communication between compu-
ter specialists and the rest of mankind. Some of it is inevitable
— how could we talk about hardware or software without
referring to cycle-time, bits, bytes, etc.?

What is the end-user to make of this? There are two
choices available to a naive user who wants to take advantage
of the processing power of modern computers. He can become
an expert, and swap technical terms with the rest of us. Or he
can try to find a computer system that he can understand, and
which can be instructed in a language similar to the one he uses
in his day-to-day work.

FINAR is such a language, and it has been designed for
executives and managers who carry out forecasting, budget-
ing, modeling and other planning activities. These types of
applications are related to the traditional jobs which are typi-
cally handled by a computer system such as the PDP-11: gen-
eral ledger, accounts payable and receivable, payroll, etc., but
are normally somewhat less time-critical. However, they are
just as vital, even for a small company, especially in today's
volatile business climate.

Programmers in the Boardroom

In many applications, there are well-defined methods of
dealing with data input, formatting of output, selection of
options, and specification of the logic to be performed. The
various possibilities are generally selected by means of a
question-and-answer routine, often depending on some sort of
logical “tree”, where the selection of one branch leads on to
further selections until action can be taken. When combined
with screen formatting and menu selection, this is a powerful
and straightforward way of handling the user dialogue.

This technique is not, however, suitable for financial
modeling. Although the question-and-answer technique is
appropriate for choosing the action to be taken next, and has
been used for this in a number of packages, the definition of
the various actions themselves is entirely dependent on what
the model is intended to do. A budgeting model might take
figures for twelve months, produce totals and percentages,
and then store data for use by an Income Statement. A project
analysis could consider various alternatives for financing, with
different calculations for lease versus buy, tax advantages and
present values. Each model is different, and even the structure
of reports for different departments of the same company can
be different.

The financial modeler could have programs written to
carry out every task that he might want to do. Each new
application (for instance, to analyze the purchase of a new
factory or the divestment of an affiliate) will require program
modification or perhaps entirely new software. Even minor
changes could demand substantial programming effort (for
instance, to re-format a report or redefine a company ratio).



May/June 1980 -

page 47

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

Many high-level executives still carry out their planning by hand
because it is impossible to respond adequately to their needs
with purpose-built software.

The obvious solution is to let the potential user program
his own models, either in a general-purpose high-level lan-
guage, or in a special-purpose language such as FINAR. Most
financial analysts are unwilling to learn how to write BASIC-
PLUS or COBOL, which demand an excessive amount of knowl-
edge of computers, especially when handling such jobs as
opening and closing files, defining reports and editing pro-
grams or data.

If we are then to expect boardroom-level personnel to
write their own computer programs, even in a special financial
modeling language, it is clear that the system must be easy to
learn and remember, straightforward in operation, extremely
powerful, and contain a wide range of possible options. In this
paper we will try to explain how these requirements have been
met in FINAR, and some of the features of BASIC-PLUS that
have been used to implement the systern.

WHAT DOES FINAR DO?

Financial modeling is generally concerned with the manip-
ulation of tables of data, known as “worksheets". The size and
shape of the worksheets are defined, along with text and
abbreviations associated with each row (considering the data
in lines across the page), and each column (considering the
data vertically). There may be internal data groupings, perhaps

by product or by division, and these groupings may relate to
both rows and columns. Figure 1 shows a typical werksheet
(albeit rather smaller than most real-life worksheets), and
Figure 2 gives the FINAR instructions that would be used to
define it.

Note the use of abbreviations to identify each row and
column, along with more verbase text to be used in the reports,
contained in parentheses. The grouping of the columns into
threes is done by using a colon after the abbreviated name of
each group, and before the abbreviated name of the items
within each group.

The user next specifies the relationships that exist
between the rows and columns. In data processing terms,
these are usually not too complicated, but to a rnanager whose
last brush with algebra was 25 years ago, even sormething as
simple as a moving average can prove quite daunting. Thus
FINAR supplies functions to carry out all types of arithmetic,
plus finance-related calculations such as discounting, deprecia-
tion, rate of return, etc., each one specified by a form of words
which is clearly understood by the financial analyst, for
example:

360 Result = Internal rate of return of Cashflow
using abbreviations and defaults where required.

The presentation of results is extremely important, and
both reports and graphs can be produced in FINAR. A very
short series of instructions will cause default output to be
produced, with more stylized formatting available if needed,
again with English-like comimands. Several reports cai access

Cost Analysis_ for the Year

FIGURE 2. Row and column definitions.

Quarter 1 Quarter 2 Quarter 3 Quarter 4 Total
Act- Bud- Vari-~ Act- Bud- Vari-~ Act-~ Bud- Vari~ Act— Bud- Vari- Act- Bud- Vari-
ual get ance wal get ance ual get ance wuwal get ance uwal get ance
Raw Materials 1243 1220 102 1319 1257 105 1399 1320 106 1484 1420 105 5445 5217 104
Manufacturing 3302 3310 100 3391 3468 98 3488 3492 100 3496 3544 99 13677 13814 99
Packaging 368 368 100 368 406 91 368 368 100 368 371 99 1472 1513 97
Transportation 876 1030 85 885 1030 86 900 950 95 903 749 121 3564 3759 95
Selling 1955 1800 109 2135 1980 108 2331 2166 108 2546 2382 107 8967 8328 108
Advertising 856 1144 75 856 1326 65 856 1062 81 856 931 92 3424 L4463 77
TOTAL COST 8600 8872 97 8954 9467 95 9342 9358 100 9653 9397 103 36549 37094 99
FIGURE 1. A worksheet.
100 Rows RM(Raw Materials) Man (Manufacturing)
110 Rows Pack (Packaging) Tran (Transportation) Selling
120 Rows AD (Advertising) TC(TOTAL COST)
200 Columns Ql: (Quarter 1) Q2: (Quarter 2) Q3: (Quarter 3)
210 Columns Q&: (Quarter &) Total:
220 Columns :Act (Act-){ual) :Bud (Bud-){get) :Var (Vari-)(ance)




page 48

May/June 1980

RST. SPROFBSl0NALRSTSPROFFSSl0NALRSTSPROFESSIONALRSTSPROI-T:‘SSIONALRSTSPROH’:'SSIONALRSTSPROFE?S1ONALRSTSPROFFSSIONALRS’ISPROFFSSIONALRSTSPROFFSSIONALRSTSPROFESSIONALRSI'SPROFFSSIONALRSFSP

the same or different worksheets, allowing full results or
summaries to be printed.

What has been described so far could probably be
achieved with a competent typist and a calculator. The real
merit of computerized financial modeling occurs when simula-
tion is carried out — the response to “What if?" questions. In a
typical budget preparation exercise, the figures might be
changed over and over again, requiring the recalculation of the
whole worksheet: this could involve thousands of calculations
being carried out dozens of times, with new reports each time.
It is clearly vital for a financial planning system to have ade-
quate means of editing data and keeping copies, and also of
editing the logic and reporting sections if this is required.

USE OF RSTS/E

Structure of FINAR

We have seen that a financial modeling system needs all
the flexibility of a programming language, although restricted
to a special set of applications. Flexibility, in turn, increases the
likelihood and scope of users’ errors, and places special
demands on the implementation language. It is traditional to
use Assembler, or at least a low-level language, to achieve the
degree of complexity and monitor-interface required by
general-purpose programming languages and run-time sys-
tems. FINAR has been implemented in BASIC-PLUS, and we
feel that this has been sufficiently successful to warrant en-
couraging other PDP-11 users to consider writing their own
English-language style applications in BASIC-PLUS.

Figure 3 is a simplified block diagram of FINAR. It will be
seen that FINAR has a structure analogous to that used by
BASIC-PLUS with its “BAC" files. The instruction editor serves
also as the monitor of the system, analyzing requests for
action in “direct” mode. A series of flags keeps a record of
which parts of the FINAR source have been modified, thus
obviating the need for recompilation of the whole model when
something trivial such as a report title has been changed. This
demands a limited amount of syntax checking by the editor at
the time of instruction entry. The compiler operates in one
pass, and generates two sorts of output:

1) Tables of text and pointers, which are normally stored
on file as they are generated, although some are sorted:
the row and the column abbreviated names are in
alphabetical order, for example, to allow quick lookup.

2)Code which is directly translated from FINAR source.
Since one FINAR instruction can generate a very compli-
cated series of calculations, the amount of code per
instruction varies greatly.

The run-time routines process the compiled code, produc-
ing worksheets as required, and printing reports on terminal
or line-printer by user request. Different modules handle the
case where the worksheets are large and have to be paged
from disk, or are small enough to be manipulated in core,
although this is transparent to the user.

Other routines (some not shown) deal with data editing,
formalized simulation (sensitivity analysis and reverse itera-
tion), transfer of data between models, and reordering of
changed worksheets. The whole system has been designed in

l

Handshake
routine
Data
editor
Instruc-—
J/ tion
editor

Run—-time

Compiler .
routines

NS

Reports/
Graphs

FIGURE 3. Simplified FINAR block diagram.

such a way that a user will not need to use any RSTS/E
commands whatsoever, except for HELLO, RUN and BYE.

Benefits from BASIC-PLUS

There are a number of BASIC-PLUS features which are
readily translated into advantages for the user of the FINAR
system. Some of these have been achieved in a slightly unusual
or non-standard way, and Figure 4 shows how a selection of
BASIC-PLUS statements and facilities which are not generally
found in other languages have been translated into worthwhile
benefits for the package's users.

FINAR

In the following sections we look at three important
aspects of financial modeling where particular attention has
been paid to giving the financial analyst flexibility, while retain-
ing clarity and control of possible errors.

These aspects are:

1)Data Access and Editing — freeing the user from con-
sideration of file nomenclature and organization, by
allowing .him to specify data cells to be modified using
descriptive, English names that he has chosen for his
data structures.



May/June 1980

2)A method for permitting the user access to the three
dimensional matrix inherent in consolidation examples,
which replaces the programmer’s indexing conventions

page 49
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP
(e.g. X (I, J, K)) by a system of user-defined names.

3) The detection, interpretation and correction of syntac-
tical and logical errors.

Feature of BASIC-PLUS

1. XLATE, INSTR, RIGHT, LEFT,
MID, etc.
2. ON ERROR/ A C

3. ON ERROR/divide by zero,
illegal exponentiation, etc.

4. INPUT LINE, INSTR, ON
ERROR/ VAL, etc.

5. KILL, NAME . . AS

6. POS

7. Alternative line terminators.

8. /\ Ztrapped as End-of-file on
terminal input.

9. INPUT without prompting “?".

10. Variable PRINT . . USING
image strings.

11. Directory lookup (SYS/FIP calls).

12. Virtual arrays.

13. Core common.

14, SQUE available from BASIC-PLUS.

15. Variable device names.

Advantage to the Programmer

Fast parsing of phrases composed
from a large vocabulary.

Controlled abort from inadvertant
program loops or unwanted output.

Replace erroneous result by sensible
default, and inform user.

Pinpoint data errors during terminal
input.

File-handling from within a program.

Position of user’s printhead can be
found:
(a) Type-ahead can be detected.

(b) Character deletion with

backslashes can be detected.
Different actions can depend on
simple keystrokes.

Can be treated as a line terminator.

The prompt can be printed ahead of
time.

Run-time formatting of output.

(a) Scan directory from within
program.

(b) Trap missing data file expected
by user.

Rapid processing of segments of
large files.

Transfer of (limited) amount of data
between chains without using files.
Program-controlled spooling.

Optional distribution of files over
different disks.

Benefit to the
FINAR Financial Modeler

Free-format English language input.
Few rules or conventions.

Orderly return to FINAR “monitor”
instead of RSTS/E “Ready".

Saves user from exhaustive mathe-
matical analysis of logic except
for special cases.

Easy recognition of where and why
error occurred. No puzzling through
lists of error commands.

Users do not have to understand or
learn system commands.

(a) Prompt can be suppressed to
avoid confusion.

(b) Line can be repeated back for
confirmatory purposes, c.f. A R.

Shorthand method of doing

commonly recurring activities.

Use instead of A U.then the prompt
can be repeated, avoiding user
confusion.

Slow typers are encouraged to type
ahead. (Obviously the preceding activity
must not be able to generate errors).

Choose parentheses, commas, etc.
via simple option.

(a) No need to go to RSTS for cata-
logue of models, data files, etc.

(b) Automatically prompt for
required data.

Consolidations, partial reports, etc. with
acceptable response time. Worksheet
size not dependent on core memory.

Speed up response.

Avoids learning about D.P. concepts
such as spooling, on-line, etc.

Freed from understanding efficiency

considerations of a particular
hardware configuration.

FIGURE 4. Benefits from BASIC-PLUS.




page 50

May/June 1980

RSTSPROFES|0NALﬂSTSPROFE&§lONALRSTSPROFESSIONALRSTSPROFFSSIONALRSTSPROFF;SSIONALRSTSPROmSIONALRSI'SPHOFESSIONALRSTSPHOFESSIONALHSI‘SPROFESSIONALRSI‘ 'SPROFESSIONALRSTSPROFESSIONALRSTSP

Data Access and Editing

To a BASIC-PLUS programmer, the procedure for access-
ing a matrix is relatively easy. The dimensions of a suitable
array can be defined, and any element may be specified by
giving two coordinates. A series of elements may be refer-
enced with FOR. e.g.

A (1%.3%) = 0.0FOR 1% = 10%T050% STEP 10%

and matrix arithmetic is available if required.

The FINAR user can carry out similar tasks, with a more
suitable and application-oriented syntax. Calculations between
rows and columns are done by using the abbreviated names
that have been defined by the user.

For example:

1) Profit = Revenue — Sum ofExpense1 to Expense4
which is a calculation between rows.

2)Total = Q1 + Q2 + Q3 + Q4
Var = Act as a % of Bud
which carry out column arithmetic, and would be used
to perform the column calculations of Figures 1 and 2.

The second example illustrates that a large number of
calculations can be carried out with just one FINAR instruction:
in this case, the arithmetic is performed for all the rows and for
each of the column groups that were defined. In programming
terms, this is equivalent to a statement involving a range of
matrix elements and two FOR loops — not a procedure that is
recommended for use by most financial vice-presidents!

Having defined the worksheets and the calculations, we
now have to consider the fact that much of the financial
analyst's work is concerned with changing data. During the
simulation phase, a large number of alternatives may need to
be tested, and this often requires the substitution of one series
of numbers for another, either temporarily or permanently.

The need to use the system editor to change data files
frequently proves an insuperable problem to the non-
programmer. The difficulties are twofold:

1)How to enter the editor and re-enter the application
prograrn.

2)Using the editor itself.

Although even a complex editor, such as TECO, can be
learned by anyone given time and practice, it is obviously
simpler to have the alternative of a built-in editor. In FINAR, an
approach similar to that adopted in some early general-
purpose languages (JOSS and TELCOMP, for example) has
been implemented.

When editing in FINAR, instead of each line being consid-
ered as a separate entity, two lines are considered together,
with the second line modifying the line above. The system
promptly changes from “?" to *??" to remind the user that
editing is taking place. A small number of special characters
indicate the editing to be done:

Space — leave character above unchanged.
I — delete character above.
<— insert characters following.

Otherwise the character typed underneath replaces that
above.

With the use of the FINAR “CONSIDER" instruction, data
can easily be changed. For example:

? Consider Workshecet 212

Advertising = 13.6 14.2 14,5 15,1
27 3
?

The CONSIDER WORKSHEET instruction causes FINAR to
open the correct file, whose name depends on the project
name and the worksheet number. The name ADVERTISING
specifies a row in the worksheet, for which FINAR locates the
data which is then displayed. The user spaces along until under
the character to be changed, and then a “2" is replaced by a
“3". The instruction is handed over to a parsing routine which
analyzes the line as edited, and puts the data in the appro-
priate location in file. Note that the separator between num-
bers is one or more spaces, which is more natural than the
usual “computerese” comma,

Obviously the editor-writers of the world are not going to
be put out of business. However, the availability of even this
simple facility at all times means that a FINAR user can learn in
five minutes to do something that could otherwise take daysto
comprehend. As we shall see later, the same editing system is
used for instructions, which has the additional advantage of
allowing even a beginner to correct mistakes from the outset.

If there are too many numbers to handle conveniently ori
one line, CONSIDER can do the same job at the BASIC-PLUS
statement FOR, and is indeed implemented as such in the
run-time routines.

TERMINALS
® \/T-100

® LA36

® LA120

® LA180

PDP11/03
SYSTEMS

LSI/11
MODULES

Demand . . . Delivery
Demand . . . Discounts
Demand . . . UNITRONIX

(201) 874-8500

198 Route 206 m Somerville, NJ 08876
: TELEX: 833184




May/June 1980

page 51

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

For example:

? Consider MAR to JUN
? Edit Incomc

Income = 3061 3108 3192 3244

12 94 30 <.5
?

In this case, the figures become 3094 3130 3192.5 3244.

The editing is achieved with a relatively simple BASIC-
PLUS subroutine which checks each character of the editing
string for one of the special characters. If none is found, the
output string has one character of the editing string appended
to it. A space causes the first line to be used, and “I" simply
moves the pointer along by one character. Insertion with
* < " just requires the character position to be correctly
stored, and the only pitfall could be careless use of
CVTSS(XS,—1%), since trailing spaces are signficant here.

The data analysis routine is somewhat more complicated.
This is because various options are available to the user in
addition to actual numeric input, for example: ’

Income = 3072 3105 grow by 10%

These are handled with a standardized parsing subrou-
tine, which returns an argument indicating the type of “word”
found next (e.g., keyword, number, symbol, don't know, etc.).
The analysis can then be done from a central return point, with
ON .. GOTO or ON .. GOSUB to deal with the various possibili-
ties. The BASIC-PLUS function VAL and intelligent trapping of
ON ERROR means that detection of the amazing variety of
errors that a user can make on data input is not too burden-
some, and their location can be accurately indicated with a
diagnostic message.

We can take advantage of the BASIC-PLUS flexibility in
allowing alternative line terminators to provide another facil-
ity. If a line is terminated with ESC, this has the meaning “act
as though | had requested another EDIT".

For example:

? Edit Volume
Volume = 52.88 51.6 50.22

27 ! <4$
Volume = 52.8 51.46 50.22
7? 39§
Volume = 52.8 51.46 50.39
27(cR)

2

The first time ESC is used (echoed as $), the line is retyped
by FINAR, thus permitting characters to be changed after an
insert sequence. The second time, this is a “fake” edit, and
nothing is changed, but it allows the user to check the line
before pressing Carriage Return and having the data stored.

An extension of the ESC idea uses the BASIC-PLUS state-
ment WAIT. If two ESC's are typed in quick succession, this
means that information is to be added to the end of the line.
For example:

? Edit Intcrest

Interest = 6.41 6.8 6.82
7?2§%Interest = 6.41 6.8 6.8
?

7.16 7.2
2.7.16 7.

23

which simply changes the last figure to 7.23. This is imple-
mented by allowing one second for another ESC to be typed: if
none is received, the single ESC is assumed. The delay in

response time has not been noticed by FINAR users since the
feature's implementation.

This double ESC facility has overcome a common mistake
made by new terminal users: the premature typing of Carriage
Return (in addition to forgetting to type it at all!). The appar-
ently trivial feature just described is in fact a very easy solution
to a tiresome beginners’ problem.

Multiple Worksheets

A frequent requirement, and a problematical one, is the
manipulation of data in three dimensions. See Figure 5. It is
now clearly impossible to subject the naive user to a standard
programming language. Even if BASIC-PLUS were to allow it, a
simple operation such as:

Z{1%,3%,K%) = X(1%,J%,R%~1%) + Y(I%,J% K%-1%)
FOR 1% = 1% TO N% TFOR J% = 2% T0 6%

is completely outside the capabilities of a financial analyst. The
problem is that the generality available from a language such
as BASIC-PLUS is in reality not required for the solution of a
simple consolidation exercise.

1| bl il e

1l il 2

FIGURE 5. Worksheet arithmetic.

The “Worksheet Arithmetic” capabilities of FINAR allow
the normal arithmetic features of the calculation section of a
model to be applied to worksheets. In conjunction with CON-
SIDER, we have a powerful method of carrying out consolida-
tions, eliminations, currency conversions, and in fact any of the
usual inter-worksheet calculations that a financial analyst will
need.

For example:

Consider Actual
Consider Expensel to Expense4
Worksheet 8 = Sum of Worksheets 2 to 6 - Worksheet 7

We have restricted ourselves to using submatrices of
cuboid shape, or at least cuboids with rectangles missing. By



page 52

May/June 1980

RSTSPROFESSIONALRSTSPROFBSIONALRSTSPROFESSIONALRSTSPROFESSIONALRS'I'SPROFBSIONALRSTSPROH:‘SSIONALRSI'SPROFBSIONALRSTSPROFESS[ONALRSI‘ 'SPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

doing this, the user’s problem is at once reduced to the simple
one of defining the edges of the cuboid, with the abbreviations
previously given. In addition, by allowing CONSIDER with work-
sheets, the same set of calculations can be applied to a series
of worksheets, either before or after the Worksheet Arith-
metic itself. For example:

Consider Worksheets 21 to 30

Tax = Taxrate * Positive Values of Profit

Worksheet 23 = Worksheet 21 — Worksheet 22
where Worksheet 22 represents some special deductions to be
made.

To preserve complete generality, a future version of
FINAR will permit names to be given to worksheets, possibly
with a grouping facility similar to that available for rows and
columns.

Errors

One of the most frequently criticized aspects of software
packages is the handling of user errors. In FINAR, a special
effort has been made to respond in a helpful way to anything
that goes wrong. Over 400 messages indicate what seems to
have happened and where.

For example:

150 Rows Cosl (Cost)(Plan 1) Cosl (Cost)(Plan 2)
You've alrcady defined A this name

A subroutine called SCAMP (Subroutine for Caret And
Message Printing) locates a suitable space with XLATE and
INSTR, and prints the message around the uparrow or caretin
this space. This procedure saves time during model develop-
ment, which is especially important when using a slow printing
terminal.

The pinpointing of the exact location of the error is a
valuable aid for the less obvious difficulties, for example:

460 Percentages are for .2 periods
Use a whole number or A a {raction like 1/6

A real difficulty arises in showing the correct location of
an error when the problem is actually caused by something
earlier in the line — an exercise which is familiar to compiler
writers. It is worth making a special effort in this regard, to the
extent of storing some extra flags and pointers, so that the
user is not deceived. For example:

650 Total = Sum of Productl
Using A this function on a single item

Although the error is not discovered until the row Product1
is found (presumably this should be something like Product1 to
Product9), the message refers to the SUM function, and a
position flag is stored in case this error is discovered.

Where errors have occurred, the FINAR editor can be used
for correction. Of course, some errors cannot be discovered in
the compilation process, especially those concerned with the
input of descriptive text, but since the FINAR editor is available
at all times, corrections can be made whenever they are found.
Users are encouraged to correct even minor typographical
mistakes as they are discovered, since in the excitement of
actually producing results, they sometimes forget all the edit-
ing that should have been done, leading to ultimate
frustration.

RSTS/E SOFTWARE

ETC provides the following products for RSTS/E

®* DUMPER, a replacement for BACKUP
— Much faster than BACKUP
— Supports large files
e Limited RMS-11K support under BASIC-PLUS
— No detached jobs
® Disk Utility Package
— Open file status by job
— Free block summary by Clustersize
— Disk mapping utility
— File mapping utility

We also provide these services:

e Custom software development
® Performance analysis
® Expert consulting and troubleshooting

ENTERPRISE
TECHNOLOGY
CORPORATION

663 FIFTH AVENUE
NEW YORK, NEW YORK 10022 « (212)688-3511

The editor operates in the same way on instructions as it
does on data. For example:

? Edit 300
300 Val = Depreciation of Asst at 200Y%
2? <over 6 years $
300 Val = Depreciation of Asst over 6 years at 200%
77(CR)
?

Where an error has occurred, the use of the ESC key is
interpreted to mean “edit the instruction that caused the
error”. For example:

680 Pounds = Dollars / 2.2.2

Don't understand this A number
?$
680 Pounds = Dollars / 2.2.2
!'$
680 Pounds = Dollars / 2.22
?7(CR)

2

FINAR users occasionally develop sufficient interest in
data processing in general to start learning more about com-
puters. They often feel that they have been spoiled by FINAR
when they start to study general-purpose programming lan-
guages: improvement could be made in most such languages in
the way that errors are handled.



May/June 1980

page 53

RSTSRROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

CONCLUDING REMARKS

The enthusiastic acceptance of FINAR by non-numerate

users is directly related to:

1) Painstaking attention to initial design of the language,
bearing in mind that the system will be used by mana-
gers who have no interest in computers, and who are
unlikely to develop such an interest. A corollary is that
the users' progress must be monitored closely, to dis-
cover where, despite our best efforts, difficulties arise
in comprehension (the FINAR training course is an
obvious place to to this), and updates to the system
must include a way of addressing these problems in an
upward-compatible way.

2)The relative ease with which a system can be created
using BASIC-PLUS, and, following on from this, the
speed with which new versions can be written.
Obviously, a pseudo-interpretive language such as
BASIC-PLUS yields an implementation of high-level lan-
guage such as FINAR which is less efficient in terms of
machine resources than the equivalent Assembler
implementation, although the BASIC-PLUS-2 version of
FINAR goes a long way towards achieving this effi-
ciency. More importantly, the total FINAR environment

FROM TRANS
PURCHASE FULL OWNERSHIP AND LEASE PLANS

PURCHASE PER MONTH
DESCRIPTION 12 MOS. 36 MOS.

PRICE 24 MOS.

LA36 DECwriter Il ........... $1,595 $ 152 $83 § 56
LA34 DECwriter IV .......... 1,295 124 67 45
LA120 DECwriter Ill. KSR .... 2295 219 120 80
LA180 DECprinter I, RO ...... 2,095 200 109 74
VT100 CRT DECscope ....... 1,895 181 99 66
VT132 CRT DECscope ....... 2295 220 119 80

DT80-1 CRT Terminal ....... 1,895 181 99 66
TI745 Portable Terminal ..... 1,595 152 83 56
TI765 Bubble Memory Term. . 2,795 267 145 98
TI810 RO Printer ........... 1,895 181 99 66
TI820 KSR Printer .......... 2,195 210 114 11

ADM3A CRT Terminal ....... 875 84 46 31

QUME Letter Quality KSR. . ... 3,195 306 166 112
QUME Letter Quality RO...... 2,795 268 145 98

HAZELTINE 1410 CRT ....... 895 86 47 32

is extremely efficient in its use of human resources, not
only for the programmers and analysts who have writ-
ten and who maintain the system, but also for the
people who use FINAR in their day-to-day work. This is a
tribute to the friendly and error-free nature of RSTS/E
and BASIC-PLUS.

It is clear that we do not have the last word on the naive
user interface, and neither does anyone else at this stage. The
greater public awareness of computing matters and terminol-
ogy, combined with the technical advances that are being
made in hardware and software, mean that computer users
can expect an even better deal from system designers in the
future. It has taken about fifty years for automobiles to pro-
gress from being the prerogative of the expert who has
learned how to operate the dozens of controls, to our current
two-pedal vehicles that can be driven by anyone after a short
period of instruction. We may have to wait just as long for
computer systems that the man in the street can use, but each
small step in the right direction moves the power of interactive
data processing out of the hands of the elite few, and towards
the grasp of the responsible manager, who demands the best
decision-making tools to support his increasingly complex role
in today's business world.

HAZELTINE 1500 CRT ....... 1,05 105 57 38
HAZELTINE 1552 CRT ....... 1,205 124 671 45
‘DataProducts 2230 .......... 7,900 755 410 277
DATAMATE Mini Floppy...... 1,750 167 91 61

FULL OWNERSHIP AFTER 12 OR 24 MONTHS
10% PURCHASE OPTION AFTER 36 MONTHS

ACCESSORIES AND PERIPHERAL EQUIPMENT

ACOUSTIC COUPLERS ¢ MODEMS e THERMAL PAPER
RIBBONS e INTERFACE MODULES e FLOPPY DISK UNITS

PROMPT DELIVERY e EFFICIENT SERVICE

X

TRANSINET CORPORATION
2005 ROUTE 22, UNION, N.J. 07083

201-688-7800

TWX 710-985-5485

The producers of the
RSTS PROFESSIONAL

are preparing for telecomphotoset - telephone com-
munications phototypesetting.

Our Intelligent Communications Interface will be
ready to receive your copy in September of this year!

The ICI is the latest in typesetting technology. We
will be able to receive data directly from vour computer
or word processor to our phototypesetter. Once these
keystrokes have been “captured”, we will mold your
copy to vour specifications, or to our design if you wish,
and send vou camera ready mechanicals or final printed
material.

YOUR NEXT
AD, ANNUAL REPORT, BOOK, BROCHURE,
FINANCIAL STATEMENT, NEWSLETTER,
THESIS,

... IS JUST A PHONE CALL AWAY!
DON'T PAY FOR RE-TYPING,
SAVE TIME AND MONEY
call or write for further details:
PEG or MARTY GROSSMAN at

5041
frankford
avenue
philadelphia
pennsylvania
19135

(215)
357-0782




page 54

May/ June 1980

RSTSPROFESSIONALRSTSPROFESSIONALRST: SPHOFT:SSIONALHSTSPROFE&SIONALRSTSF’HOFESSIONALRS'ISPﬁOH-'SSIONALHSTSPROFFSSIONALRSESPHOFESSIONALRSTSPROFESSIONALRSTSPROFBSIONALRSFSPROFESSIONALRSTSP

A RSTS/E

By Jeffrey S. Jalbert and Susan Blount Duff
Denison University, Granville, Ohio

ABSTRACT

We have just completed a total conversion of our RSTS/E system to VAX/VMS
employing VAX-11 BASIC as our primary language for applications programming.
This paper describes the conversion process and compares the two systems and the

two versions of BASIC.

At Denison, we have Jjust completed a total conversion of our

computing from RSTS/E to a VAX/VMS systemn. We were

impelled to this decision by a complete exhaustion of the
capacity of our 11/45, and a perceived need to have a system
that would be able to sustain the demands of a burgeoning
user community consisting of two major parts, academic and
administrative.

Our academic users make up the bulk of the user popula-
tion with about 2400 active accounts, and members of this
group log onto our system about 1200 times per day. This load
is encouraged by the stated goals of the college, one of which is
to produce graduates who are literate in computing. This
means that students are using computing actively in a wide
range of disciplines ranging from physics to philosophy. Qur
social science users make heavy demands on our data-
processing capacities, using SPSS, BMDP, ECPRESS, and MIN-
ITAB. Many students and faculty use the system for text
preparation, and we believe that there are very few games
active. Over 80% of our students use the systemn during their
four-year stay. In addition to the above activity, students may
major in computer science and we expect to graduate six to ten
majors this academic year.

Our administrative users are from all offices in the college.
We process student information from the time prospects
make inquiries at the admissions office throughout their
alumni careers. We support the maintenance of several inven-
tories, do some billing breakdown for the telephones, do the
general ledger, handle the mailing system, and produce the
student payroll. We even do some work for the library in
disseminating their acquisitions list. We have enumerated
these application areas to give some idea as to the variety of
real data-processing problems with which we have experience.

We have converted over 500 programs, the bulk of which
were initially written in BASIC-PLUS, with a sprinkling of BASIC-
PLUS-2, FORTRAN and PASCAL. The target language on the
VAX was VAX-11 BASIC for all the BASIC-PLUS programs.
FORTRAN or PASCAL were used for the others.

Our data-processing applications were supported in three
different ways. First, very specialized applications such as
course registration had a special set of programs. All financial
systems were implemented using a purchased data manage-
ment system, while the rernainder of the work was imple-
mented through a home-grown data management package.

A BENCHMARK

Before continuing, it will be necessary to describe briefly

the target hardware configuration. The VAX processor was
supplemented with a floating-point accelerator, which adds
about 20% to its speed in complex floating point calculations.
The memory is two and one-half megabytes of MOS, and the
disk subsystem consists of two RPO6 drives, each on a separ-
ate massbuss controller. There are two TE16 tape drives, a
card reader, line printer, and 64 DZ11 lines. We chose a large
memory configuration because of our experience on RSTS/E
and our target of supporting 64 timesharing jobs
simultaneously.

We ran a benchmark on our system in order to verify its
performance at the level of 64 jobs. To do so we developed a
program which could exhibit a wide variety of characteristics. A
particular set of these characteristics could be stored in a file,
which then became a script for a session. The script would be
performed, and when finished, the program would repeat that
script. Performance statistics were collected and analyzed
after every ten iterations. The choice of activities for a script
included the following:

terminal output
CPU bound

disk 170 by directory
disk 1/0 by file
scheduling

This test program was written in BASIC-PLUS-2 on our
RSTS system and implemented in that language on the VAXin
compatibility mode. Consequently the images were not shared
between processes; each has its own copy of the code. Our
expectation is that system performance would have been
somewhat better if we had used VAX-11 BASIC to run the test,
but only because there would have been no swapping at all.

Sixty four different scripts were developed, although
there were similarities between many of them. These scripts
were then divided into eight groups of eight. Each set of eight
had the following composition:

4 highly interactive scripts

1 script simulating a program listing

1 script that is completely CPU bound

1 script that is completely disk 1/0 bound,
by directories or files

1 script that mixes CPU and disk work

- The object of this mix was to test the system at its limits:



Now

You Have

Enjoy

New Perspectives in Programming
New Horizons in Data Management

Logical Systems announces ACCESS, an information management

ACCESS improves
productivity by generalizing
your development.
Programming becomes
easier. Software
maintenance time goes
down. Your system runs and
looks better, is more
manageable and more
modern. You feel better!
And best of all-you can use
ACCESS and all its features
for much less than you'd
think!

Imagine what these ACCESS

tool for RSTS Users

features can do for you.
e Screen, data, and
report definitions are
all dictionary driven.
* Using direct cursor
control, ACCESS
automatically formats
and protects all
screen handling.
* Input fields are edit
checked with the
dictionary for validity
and type.
* Data files are protected
through a “layered”

security system.

e Record retrieval is

multi-key.
And there’s a source
program generator, a
report generator ... and
more !l

Call or write:

LOGICAL SYSTEMS

Software Distribution
PO. Box 2676/ La Jolla, CA 92038

714-455-5211




page 56

May/June 1980

RSTSPROFESSIONALRSTSPROFFSS[ONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFFSSIONALRSTSPROFFSSIONALRSTSPROFFSSIONALRST‘SPROFESSIONALRSTSPROFESSIONALRSTSPROFFSSIONALRST SPROFESSIONALRSTSP

maximum CPU work, maximum disk 1/0, and worst case direc-
tory (FIP) conditions. We hoped that our normal operating load
would be exaggerated by the benchmark as designed.

Stretch Factor

10.0

Number of Jobs (N)

Figure 1.

We then hooked one terminal up to each of eight DZ lines
in succession and started a new script. The progress of the
whole benchmark was monitored by a special “test” script
which we ran at the console. The performance of the console
Jjob was monitored each time 8 jobs were added, and the entire
result scaled by the time it took the test job to run alone. The
results of this test are presented in the diagram below.

In addition, we ran a regression on the data in order to
test its linearity. The resulting regression equation was:

S.F.=0.813 + 0.0712*N + 0.001*N*N

Our expectation was that at some point there would be a
knee in the stretch curve. That knee would then be used to
determine the maximum job load that a VAX could handle. Itis
clear from the above results that the response over the entire
range tested is linear, with a slight improvement at about 45
Jjobs due to the release of time from the management of free
and modified page lists.

In addition to these stretch factors, we determined some
factors which affect the subjective feel of a system. Adirectory
command would take between 5 and 15 seconds to initiate,
but complete in a constant interval with no hesitations
between file listings. Editing a one block file with TECO took 17
seconds. Purging a large directory took 4.8 seconds. Deleting a

400 block file took 4.8 seconds. A truly subjective judgement by
a user who wrote and ran a small program was: “It's not too
bad, certainly much better than the RSTS system with 25
users.”

In performing this test we learned that some of the
common wisdom for operating a VAX system was in error. The
most notable problem was the suggestion that we modify the
priorities of system jobs. As a result of doing this we managed
to hang the console because there was enough higher priority
activity so that the CPU was 100% utilized and the system jobs
could never be scheduled. Our recommendation for systems
with sufficient memory is that the standard priorities not be
disturbed. VMS seems to be able to manage its memory
resources sufficiently to keep the processor completely busy,
and in these cases swapping will not be so devastating as to
impede the overall system performance. At 64 jobs, there
were approximately 24 swapped at any one time, and none of
these was actively requesting processor time.

VAX-11 BASIC

The primary language used to implement our applications
on the VAX was VAX-11 BASIC. This is an optimizing compiler
which generates VAX native mode code. It is fully compatible
with all other VAX native mode software, and in particular has
access to all system services. Many of these system services
are similar to RSTS/E system function calls. However, access to
these services under VMS often involves worse bit-twiddling
tricks than required by RSTS/E. The compiler supports the
wider range of VAX data types but can only support in a given
program either single or double-precision floating point varia-
bles but not both. Both single and double length integers can
be mixed in all programs.

The compiler supports many features that aid debugging
such as immediate mode. In an environment using subrou-
tines, immediate mode can be used by “loading" these subrou-
tines into BASIC's memory before program execution is begun
from the Ready prompt. The compiler is a native mode image
and exhibits considerable speed.

PERFORMANCE COMPARISION OF
DIFFERENT BASIC'S

In order to get a feeling for the speed of VAX-11 BASIC we
applied several tests. One was a very simple program which
added in floating point the numbers from 1 to 100000. A
comparison run of this program in several different dialects of
BASIC and on three different machines produced the following
execution time results:

LANGUAGE ENVIRONMENT TIME
VAX BASIC 1

VAX BASIC-PLUS-2 58
VAX FORTRAN [V PLUS .6
VAX PASCAL .8
VAX COBOL 74 26
11/70 BASIC-PLUS 28
11/45(CACHE) BASIC-PLUS 38

TRS-80 LEVEL Il BASIC 668



May/June 1980

page 57

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

Perhaps a better estimate is the wall time taken to exe-
cute a complicated task. We developed two comparisons like
this. The first was a program which processed a 20,000 record
file of our prospects. This program looked up the alumni club
area for each record as determined by a zip code table and
stored the result back in the file, and did no other computation.
In BASIC—PLUS-2 (compatibility mode) this took 75 minutes.
In VAX-11 BASIC this took 15 minutes, and improvement by a
factor of five. Similar comparisons between RSTS/E BASIC-
PLUS-2 and VAX BASIC-PLUS-2 give a performance of roughly
1.5 to 1 in favor of the VAX, of course considering that the VAX
jobs were running in an active environment, while the RSTS
environment was otherwise quiescent. Comparisons of BASIC-
PLUS on RSTS to BASIC-PLUS-2 in the past gave us about a 5 or
6 to 1 improvement, so that overall, a program compiled using
the VAX-11 BASIC compiler would be approximately 35 times
faster than a corresponding program using RSTS/E BASIC-
PLUS.

THREE CONVERSION STRATEGIES

We identified three general strategies that would be used
in converting our systems. These are:

1. Recode the programs.

2. Modify the programs to use the full functionality of
RMS and all the other functionality of VAX-BASIC.

3. Use BASIC VIRTUAL organization to mimic RSTS disk
structure, and otherwise minimize any other changes
to the programs.

We experienced a variety of difficulties during the conver-
sion. Following is a discussion of many of the problem areas.

SYNTAX DIFFERENCES

VAX-11 BASIC is an extremely rigorous compiler. By this
we mean that it will enforce syntax requirements to a degree
BASIC-PLUS and BASIC-PLUS-2 users have not yet expe-
rienced. Thus we discovered blatant syntax errors in pro-
grams that were operating satisfactorily in both of these lan-
guages. This difference is only an issue at conversion time and
then primarily only a nuisance and not a real obstacle, but it
did give us pause to think that these systems had been guess-
ing at what we wanted. Because it is an optimizing compiler,
constant subscripts are checked at compile time, and resolv-
ed into absolute addresses then. One result of this procedure
is that some things that used to be execution time errors are
now compile time errors.

In addition VAX-11 BASIC enforces the stricter syntax of
BASIC-PLUS-2 rather than that of BASIC-PLUS. As a result,
some programs will not compile without errors, and others,
although they will compile error-free, execute in unexpected
ways. Some examples of this follow.

First, in fairness we should point out that many of the
instances of syntax difficulties occurred in code written in less
than admirable or recommended style and which made use of

undocumented features of the language. RSTS allows a casual-
ness that approaches sloppiness that can cause real difficulty
when converting. Also RSTS oldtimers will recall what contor-
tions were necessary to squeeze a lot of program into a little
space. Unfortunately this encouraged programmers to develop
bad habits. However undesirable, this old-style code is preval-
ent in many RSTS installations and in our case, the source of
more than its share of conversion headaches.

This segment will not compile:

FOR 1%=1% TO 10% &
IF FNAS(1%) < > "" &
THEN NEXT 1%

The problem here is that the NEXT is in the THEN clause.
(Admittedly this is not a recommended construction.)

Nor will this line compile:
FIELD 3% AS A$

The problem here is that channel zero is not explicitly refer-
enced. Again, this is an undocumented feature of BASIC-PLUS
and therefore no loss of supported functionality.

These are relatively trivial problems compared to those
caused by unexpected execution results. The treatment of
strings in VAX-11 BASIC and BASIC-PLUS is substantially dif-
ferent. When a fielded variable is used as the source of a LET,
the only thing that BASIC-PLUS does is update a pointer.
VAX-11 BASIC creates a whole new string. Those programs
which are coded to take advantage of this feature will compile
without diagnostics, but will execute improperly. Moreover,
some programs are rather subtle in their manipulation of the
side-effects. An example will suffice:

DEF* FNGSS$( . . . .

FIELD # 1%, R%*(1%-1%) AS AS, 1% AS RECORD.$
FNGS=RECORD.$
FNEND

This routine was called by the following:

RECORD,$=FNGS( . . .
LSET RECORD.S=. ... ..

In BASIC-PLUS the record in the buffer is updated. In
VAX-11 BASIC a new string is created for the FNGS, and a third
copy of that string is created for the RECORD.$ variable. The
data is inserted in that second copy, not in the record buffer. Of
course, any updates made by this program will not be applied
to the disk file.

Syntax errors will be flagged if variables defined in DIMEN-
SION statements, MAP’s or COM's are referenced before the
occurrence of these data declarations. This means, of course,
that all DIM's, MAP's, and COM's have to be moved to the first
of the program.

In general, all syntactical differences experienced in con-
verting BASIC-PLUS programs to BASIC-PLUS-2 will be likewise
experienced in converting to VAX-11 BASIC.



page 58

May/June 1980

RSTSPROFBSIONALRST‘SPROFESlONALRSTSPROFESSIONALRSTSPROFESS[ONALRSTSPROFFSSIONALRSTSPROFFSSIONALRSTSPROFBSIONALRSTSPROFESSIONALRSTSPROI-ESSIONALRST SPROFESSIONALRSTSPROFESSIONALRSTSP

CONVERSION FROM
RECORD 170 TO RMS

VMS essentially supports only RMS files, so all BASIC
programs will have to be modified to use some form of RMS file
structure. This produced a whole host of problems.

RMS is very precise about the difference between PUT'ing
arecord and UPDATE'ing it. Therefore, one cannot use PUT for
all file storage operations. As a result of this, some algorithms
that were used on RSTS/E were no longer valid and had to be
substantially modified. One simple solution in many cases was
to prewrite every block of the file and then only use UPDATE in
the course of the program.

Every single OPEN statement had to be investigated and
most of them modified. OPEN statements must be very explicit
about what they are going to do with afile, what kind of a file it
is, etc. The OPEN statement has many clauses, most of which
we had to include because the default values were not desira-
ble in our case. For instance, one must specify file organization
or it will default to sequential variable. For fixed length files,
the logical record size must agree either with the explicit
declaration in the OPEN or the implicit declaration in the MAP
statement.

File sharing can be defined more precisely in RMS with the
ACCESS and ALLOW clauses, but there are problems here as
well. For instance, if a file is opened ACCESS MODIFY, but the
user does not have write privilege to the file, an access violation
will occur regardless of the fact that the program may never
attempt to perform a write. The access violation occurs at file
OPEN time, not at processing time. This problem came to our
attention because this is the default access value. If in conver-
sion this clause is omitted, as happened in our case, error
messages about access violations occurred that seem unwar-
ranted in the RSTS meaning of the phrase.

FIELD statements may be retained, but it is often wiser to
convert to MAP statements. Since RMS de-blocks records, then
the role of the dynamic FIELD statement is much reduced.
However, there really seems no good way to define a record
buffer dynamically. Both the FIELD and the MOVE are slow, and
MAP’s will not accept variables in their size specifications since
they are used to generate absolute addresses.

Furthermore, VAX-11 BASIC is more rigid about having
file organization dictate legal file activity and coding tech-
niques. For instance, in RSTS it was possible to have both a
DIMENSION and a FIELD statement for a virtual array. In
VAX-11 BASIC this generates an error at execution time.

Because many of our systems were converted to RMS
ISAM files the concept of a record pointer was modified. For
these files, the Record File Address must be used. In order to
determine the RFA of a record, a special clause of the OPEN
statement must be employed, the USEROPEN clause which
references a MACRO program that is executed as part of the
OPEN process. This routine then can determine the address of
the Record Attribute Block for the file, and this can be used to
determine the RFA of a record whenever the file is read. Files of
RFA's are produced by the system SORT utility. These pointers,
instead of being suitable for integer virtual core arrays as were
logical record numbers on RSTS, go into sequential files with
six-byte records. Reference to random records in these files,
for instance in order to re-start a report, becomes a loop of
FIND or GET statements rather than the much more straight-

forward subscripting we used to be able to do.

We feel some concern in our use of RMS at this time, for it
is very clear that optimal use of this technique is not yet
completely understood. We don't know the best blocking fac-
tors and bucket sizes, how often to revise the files so internal
links are maintained in the optimum order for retrieval, and in
general we don't have a “feel” for the files. In addition many of
the utilities provided on VMS for the processing of RMS files
are compatibility mode images and therefore can not handle
the full functionality of RMS-32.

OTHER AREAS OF DIFFERENCE

Chaining

The CHAIN statement is implemented in a limited form.
No line numbers are allowed. We found that well over 90
percent of our programs that used chaining did so to lines that
were not at the beginning of the program. In fact RSTS/E
standards encourage this practice. To make sets of these
programs work together, we turned all such main programs
into subroutines called by a main program. The function of the
main program is to “direct traffic’, by calling the routine
specified in some common area. Each program so called is
responsible for checking the line number at which execution is
to begin and branch to the correct line. In a sense this is the
way we would have written these programs had we had the
address space to play with in the first place, but it did cost us
time to study each program and find out what the initial
branching table should be.

BATCH Processing

Batch processing on VMS is substantially different than it
is on RSTS systems. On RSTS a batch job is run at a pseudo-
keyboard. On VMS, there is no such thing as a pseudo-
keyboard. Instead, two separate files are used to store 1/0 for
the program. These are the process-permanent files known as
SYSSINPUT and SYSSOUTPUT. One consequence of this is that
none of the data input to your program is echoed in the batch
log, which is the file SYSSOUTPUT. If you wish to have this
dialogue appear in the log, then the program will have to be
modified to detect if it is running in batch and echo the data
itself. This means that a conditional PRINT statement has to be
added for every INPUT statement in your programs.

A further problem associated with batch processing is
that many programs open “KB:" on some channel so as to avoid
the "?" prompt when in conversation with the user. In this
case, the prompt is usually performed on the same channel
from which the input is taken. This works fine interactively but
fails in batch because there is no keyboard at all. The file cannot
be opened on SYSSINPUT because you cannot do output to
that file. SYSSOUTPUT cannot be used for a similar reason. The
only solution is to split the prompting away from the input file.

Debugging

Debugging a program has some new features. Since VAX-
11 BASIC allows subroutine calls, these subroutines must be
compiled separately. These object files may be loaded by BASIC



May/June 1980

page 59

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESS! ONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

and the main program run. Essentially BASIC is performing
some of the tasks of the linker. Subsequent to this, immediate
mode statements (even things like GET with a key) may be
issued. One problem with immediate mode is that being a
compiled language, no new variables may be created by an
immediate mode command. Very simple programs written to
test an idea may fail in immediate mode because sufficient
temporary variables have not been generated by the program
code itself. Furthermore, a program cannot continue after
being stopped if program changes were made.

Routines not written in BASIC cannot be loaded by BASIC.
Programs using such subroutines must be debugged using the
VAX-11 Symbolic Debugger. The Debugger allows the pro-
grammer to examine and change data, set breakpoints and
trace the flow of the program. It is very similar to the debugger
provided with BASIC-PLUS-2.

SYS Calls

Some SYS calls are implemented. These are:

CODE FUNCTION
0 CANCEL CONTROL/0

2 ENABLE ECHO
3 DISABLE ECHO
5 EXIT WITH NO PROMPT
6 CALL FILE PROCESSOR
—23 FILE STRING SCAN
—13 SET PRIORITY (ONLY PRIORITY)
—10 FILE STRING SCAN
=7 CONTROL/C TRAP ENABLE
9 GET VAX BASIC ERROR MESSAGE
10 ASSIGN A DEVICE
11 DEASSIGN A DEVICE
12 DEASSIGN ALL DEVICES
13 MESSAGE SEND/RECEIVE
14 MESSAGE SEND RECEIVE
(CANNOT GET JOBNUMBER, ETC)
7 GET CORE COMMON
8 PUT CORE COMMON
9 EXIT AND CLEAR PROGRAM
11 CANCEL TYPEAHEAD

Many of the things determined by other function calls can
be developed using MACRO subroutine calls or direct calls to
VMS system services from BASIC.

There were other problems relating to differing philoso-
phies between the two systems, VMS uses a FORTRAN-like
carriage control. The sequence is line-feed, data, carriage-
return. RSTS has the sequence data, carriage-return, line-feed.
Because of the VMS sequence, it is easy to overwrite data on
the keyboard if printing on several keyboard channels with
semicolons.

VAX BASIC defaults all terminal format files to a width of
72. If longer print lines are to be formed, the MARGIN com-
mand is necessary to override automatic wrap-around after 72
characters. Alternately, the RECORDSIZE clause, which is RSTS
compatible, may be included in the OPEN statement.

VAX-11 BASIC enforces a much stricter policy regarding
error processing, and entry into and out of DEF*'s. (Both DEF*'s
and DEF's are present in the language.)

SUGGESTED MIGRATION PATH

If given the time, those intending to migrate to VMS
should consider the following steps:

1. Convert all existing BASIC-PLUS programs to EXTEND
mode. Code all existing programs in EXTEND mode
using the ampersand continuation character rather
than line-feed.

2. Convert BASIC-PLUS to BASIC-PLUS-2.

3. Abandon Record I/0 and convert applications and files
to RMS. The saving in program size alone warrants this
approach. All record 1/0 files will have to be converted,
at least to VIRTUAL organization.

4. Avoid extreme system dependent features imbedded
in the SYS calls.

5.Good practices, such as using standard modules,
become a great boon because the modules have to be
converted only once and then re-appended.

PHYSICAL TRANSFER OF PROGRAMS AND DATA
FROM THE PDP-11 TO THE VAX

We experienced only a few problems with the physical
transfer of data between the systems. The most annoying of
these dealt with the fact that line terminators for RSTS include
the form-feed and line-feed characters. Because of this the
program FLX will not transfer these files as ASCII files but
requires the use of image mode to move them. This causes an
extra line terminator to be inserted every 512 characters. This
terminator must then be edited out later. RUNOFF produced
DOC files were particularly bad in this regard, but we also
experienced problems with many programs. We had no prob-
lem with programs written in extend mode using the amper-
sand as the continuation character. Raw data moved easily by
PIP’ing the files to tape, and FLX'ing them from tape onto the
VAX. The resultant file organization is virtual with 512 byte
records, just what is necessary to handle virtual core arrays or
unblocked records with FIELD statements. In fact, virtual core
arrays of binary floating and fixed point data moved with no
difficulty.

CONCLUSION

In summary, VAX-11 BASIC is a very fast compiler and
run-time environment. We have found that it is quite comforta-
ble to use, and in a sense it is the best of both worlds, sinceitis
both semi-interactive and compilable. It is certainly miles
ahead of BASIC-PLUS-2. The immediate mode editor bypasses
the need for using an editor such as TECO for small corrections
to programs from the Ready prompt. There is virtually no limit
to program size, so programmers no longer need worry about
that constraint. The result is algorithms that are more effi-
cient of system resources and execute much faster. One is no
longer limited to just BASIC in any program since subroutines
written in any other native mode language may be called. Large
libraries of general purpose mathematical routines thus
become instantly available as well. The complete range of VMS
system services is available to all users.

Our experience has been positive and we recommend the
language and the system highly.



page 60

May/June 1980

RSTSPROFESS!ONALRSTSPROFESSIONALRSTSPROFBSIONALRSTSPROH"SSIONALRSTSPROFESSIONALRSTSPROFFSSIONALRSTSPROFESSIONALRSI'SPROFFSSIONALRSTSPROFFSSIDNALRSTSPROFESSIONALRST 'SPROFESSIONALRSTSP

170 from Macro -- quickly and easily!

By Bob Meyer

The following article won't be a lesson in PDP-11 assembly
language, but rather a basic description of how to get started
writing Macro code to run on your favorite RSTS system. I'm
sure you've heard a lot of evil things about Macro; “it takes too
long...", or “Macro code can only be maintained by long-haired
weirdos with leprosy", or my favorite, “You can't do I/0 from
Macro; only Basic can do that!".

Well, | hope that by the end of this article, | will have
changed your mind about some (if not all) of these horrors.

To get right to the meat of the matter, let's start off with
some 1/0. (1/07??7?7?)— Yeah! This first macro module prints to
the current kb: and will be used by other chunks of code,
especially the FIRQB / XRB stuff. You may find it handy to have
your copy of the System Directives Manual close by; (I keep
mine under my Beer...).

Before we go any further, let's look at two very important
items in the monitor; the FIRQB (File Request Queue Block) and
the XRB (Transfer Request Block). These two beauties exist in
your Virtual workspace at locations 402 (FIRQB) and 442
(XRB) [by the way, in Macro Land, we default to Octal unless
otherwise noted]. These memory locations are set aside by
RSTS for User/Monitor communication (and should never be
used for any other purpose!). When a User program issues a
Monitor Directive (an EMT), the Monitor, through the Black
Magic of memory Management, gets his paws on that User's
FIRQB and XRB. With the contents of one or both of these
blocks, and by looking at the EMT code that was issued, RSTS is
usually able to determine what it is you are trying to do. When
the request is completed, the monitor returns (posts) certain
information back to the user’s FIRQB and/or the XRB (depend-
ing on the type of call). Pages 2-12, 2-13 of the Directives
Manual show the general layout of both blocks. (I also recom-
mend browsing through COMMON.MAC for more details.)

Now let's get back to our Print program.

Take a look at Fig. 1; the first 30 lines or so are simply
Documentation (wow!) and a few common monitor definitions
so we won't need to assemble with any other files (i.e., com-
mon.mac). The actual execution starts at statement 29 with
the label ‘PRINT:" (the .END statement selects the program'’s
transfer address).

Basically all we're doing here is as follows:

1)Get a handy Pointer to the XRB (RO)

2)Move the Length of the message to be printed into the
first two words of the XRB (XRLEN XRBC) (the length in
this case was calculated at line 24)

3)Move the Address of the message into the XRB
(XRLOC)

4)Set the Channel number (times two) to zero for this kb:
(XRCI)

5)Set Block number to zero (XRBLK)
6)Set Wait Time to zero (only used for kb: input)

7)And Clear all modifiers (XRMOD)
(like, “Put 0%, Record 1%" for Binary 1/0)
(or, “Get 1%, Record 32767%+16384%" for Multi
TTY)

Now the XRB is loaded, we're ready to call RSTS to do the I/0.
This is done at statement 38 by the ‘.WRITE' directive, after
which we exit to the system default RTS.

When the Processor executes the .WRITE EMT, it
switches to Kernel mode, and traps thru 30 (don't get scared
...). A few microseconds later, we end up running in the EMT
Phase of the monitor, where our .WRITE actually becomes a
request to the Terminal Driver.

The program in this example is quite runnable (6C or 7.0),
and | encourage those interested to key it in and take it for a
spin. Assuming you called this critter PRINT.MAC, it can be
assembled as follows:

MAC PRINT,PRINT=PRINT
;THE SECOND ‘PRINT" IS THE .LST FILE

And task built:

TKB PRINT,PRINT=PRINT
;THE SECOND ‘PRINT' IS THE .MAP FILE

Then just ‘RUN PRINT'

Another concern | hear from non-Macro types is that of
privilege problems. (“That Macro program can access anything
in the system!!") Trust me, folks, Macro programs have NO
special access rights to anything! The program is running in
User mode (unless you get crazy and mess with the 1/0 page,
but that's another article) and has whatever privileges the
user has normally. Non-prived people can write and execute
Macro code and can do no more harm to a system than an
equivalent Basic-Plus program. I would advise beginners, when
trying out monitor calls from privileged accounts to be very
careful; it's very unlikely that you would bring down RSTS, but
you might KILL someone else’s job instead of changing a
password by putting something in the wrong place in the
FIRQB. Keep in mind, the Assembler assumes Octal numbers
unless told otherwise, and the Directives Manual gives FIRQB
XRB descriptions in Octal also.

For those who plan to get more involved in Macro pro-
gramming, | would suggest the following documentation:

The Processor Handbook for your machine,
Macro-11 Reference Manual,
RSTS System Directives Manual
This should get you started (and this is only the
beginning!)
Good Luck!



May/June 1980

page 61

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

.TITLE PRINT
.IDENT /1.0/

PRINT DEMO

;PRINT.MAC -- SIMPLE EXAMPLE OF PRINTING TO

; THE USER'S KB:

Ne wo “wo

°
7

IN MACRO

4/25/80 BOB MEYER

;DEFINE SOME CONSTANTS

;

XRB
WRITE
EXIT

Ne wo we

.ENABL LC
MSG: .ASCII
.EVEN

MSGLEN =

~e weo wo

PRINT: MOV
MOV
MOV
MOV
CLR
CLR
CLR
CLR

WRITE
.EXIT

.END

000442
104004
104046

DEFINE ASCII MESSAGE

.—MSG

START OF MAIN CODE

#XRB, RO
#MSGLEN, (RO) +
#MSGLEN, (RO) +
#MSG, (RO) +
(RO) +

(RO) +

(RO) +

(RO) +

PRINT

/Hello from Macro land

FIGURE 1.

s START OF TRANSFER REQUEST BLOCK
;RSTS 'WRITE' DIRECTIVE
;RSTS 'EXIT' DIRECTIVE

J<EB3L1 25

;CALC LENGTH OF MESSAGE

; POINT TO THE XRB

; LOAD XRB WITH MESSAGE LENGTH
s TWICE

: LOAD ADDRESS OF MESSAGE
;CHANNEL # * 2 TO PRINT
;BLOCK # TO PRINT

;WAIT TIME FOR INPUT ROUTINES
;OPTIONAL MODIFERS

;CALL RSTS TO DO THE WRITE

;EXIT TO DEFALT RTS

The 11/44 that couldn’t. At Chicago 1980.

We got Joyce! Did Joyce get us?




page 62

May/June 1980

RSTSPROFFjSIONALRSI’SPROFESSIONALRSI'SPROFESSIONALRSTSPROFE.SSIONALRSTSPROFESSIONALRSTSPROFBSIONALRSTSPROFESSIONALRST’SPROFFSSIONALRSTSPROHES|ONALRSI‘SPROFBSIONAIRSTSPROFEESIONALRSFSP

A BASIC-PLUS-2
PROGRAMMER'’S GUIDE TO
RESIDENT LIBRARIES

By Al Cini, Computer Methods Corporation

While they evolve along distinctly different paths, RSTS/E and
RSX occasionally intersect in some commonly implemented
function or feature designed to promote compatibility
between them. The RSTS/E V7.0 flavor of “Program Logical
Address Space” monitor directives parallel their RSX-11 coun-
terparts, offering the BASIC-PLUS-2 programmer expanded
control of the physical relocation of portions of his or her
application programs within computer memory. Provided mon-
itor support for resident libraries was selected at system
generation*, you can take advantage of this new feature in two
ways:

1. You can use Taskbuilder commands to build and “link”
to resident libraries. Only a very little bit of non-
threatening assembly language coding is required —
the Taskbuilder does most of the work.

2. You can execute .PLAS monitor calls to attach and map
resident libraries. This approach requires some moder-
ately demanding MACRO, but offers great flexibility of
control over user memory.

This article wil! treat the Taskbuilder procedures required
to create and use resident libraries, including all the assembly
language needed to create “resident common” memory areas.
While some discussion of their possible uses will be offered, a
detailed discussion of .PLAS directives is deferred to your copy
of the "RSTS/E System Directives Manual.” Material presented
in this article is intended as a supplement to standard RSTS/E
documentation. Some previous familiarity with Taskbuilder
procedures is assumed, and the reader is referred to the
“RSTS/E Taskbuilder Reference Manual” for in-depth treat-
ment of specific commands.

What is a resident library?

Shared memory segments — regions of physical compu-
ter memory which appear to be a part of one or more active
user jobs — are not new to RSTS/E. RSTS has made good use
of such structures for years: they're called run-time systems. A
really lucid description of how RSTS/E relocates, or “maps,”
user programs, run-time systems, and resident libraries within
physical computer memory (including a truly inspired drawing
worth many thousands of words on the topic) can be found in
Chapter 2 of the System Directives Manual. Briefly, a RSTS/E
Jjob's “logical” memory consists of its (optional, if disappearing
RSX) run-time system (HISEG), its task image, and up to 5
optional resident libraries (even more, provided they're not all
“attached” by a job at the same time).

In the BP2 environment, the run-time system may be RSX,
BPZCOM, BASICZ, or RMS11. Compiled code and data will
comprise the task image, which can access either or both of the
“standard” resident libraries (RMSRES/RMSSEQ and BASICS),
as well as other user-built libraries.

In the BASIC-PLUS environment, a user job will consist of a
flavor of BASIC-PLUS run-time system (determined when it is
initially built) and a “work area” containing semi-compiled
instructions and data. The total memory taken by all simultane-
ously mapped software components cannot exceed 32KW (this
is the infamous “32K limit"). BASIC-PLUS-2 programmers are
well aware that, within this limitation (it may be even more
strict, depending on the local SWAP MAX), BP2 program size
can be traded off against execution-time performance by
selecting from among a somewhat confusing assortment of
HIESEGs, ODL files, and RESLIBs in taskbuilding their jobs.

*The “disappearing RSX" option, while not a strict necessity, is a practical requirement for BASIC-PLUS-2 resident libraries.



May/June 1980

page 63

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

It's important to note that, when assembling memory
segments into jobs, RSTS/E considers user memory in 4KW
“pages.” A user job can control up to eight of these pages at a
time, and the Taskbuilder deals in pages when connecting
separate memory components to your task (see figure 1). The
system “maps” these pages into physical memory by loading
address relocation information into the job's 8 Active Page
Registers (APRs) using mechanics which are totally transpar-
ent to the user. An important practical ramification of this
“page” architecture is that any resident library or run-time
system will occupy multiples of 4KW user memory chunks.
Thus, a stripped-down 14KW BASIC-PLUS run-time system will
not allow a program size of 18KW; 16KW is still the maximum.
Likewise, a shared common area containing a one word status
flag will gobble up another 4095 words of user memory when
it's attached to a job. Note that physical memory is allocated
by RSTS/E in smaller 1KW chunks, so small memory seg-
ments (such as the 3KW RSX run-time system) occupy
memory regions rounded up to the next 1KW in size.

Like a run-time system, a resident library exists within a
distinct, named region of physical computer memory defined
when it is ADDed to the system (normally via the UT ADD
LIBRARY command). Like a run-time system, a resident library
may be mapped into more than one user job at a time (i.e., may
be “shared"), and may contain subroutines, program sections,
or other “global” symbols which may be referenced transpar-
ently by an associated task. Unlike a run-time system, a shared
library contains no job control structures (such as a pseudo-
vector or keyboard monitor), must be loaded at a specific
physical memory address, and may be “attached” or “detach-
ed” dynamically by a user program. The RSTS/E implementa-
tion of resident libraries indeed closely parallels its run-time
system mechanism. If you re-name BPZCOM.RTS, as PB2COM-
.LIB, it can then be ADDed and “linked" to your BASIC-PLUS-2
program (your HISEG must be disappearing RSX to manage
this) just as though it were a resident library.

Things that go into resident libraries.
A resident library may contain only code (such as RMSRES

and BASICS), only data (this is a “shared common" area, and
can be used for high-speed inter§ob communication), or some
specially tailored combination of code and data.

A shared library containing code is considered to be re-
entrant if the software within it can be executed simultane-
ously by more than one task (e.g. RMSRES, BASICS).
BASIC-PLUS-2, like most high-level language processors, does
not generate re-entrant code; resident libraries containing
BP2 subroutines thus can't be shared by multiple jobs.

Whether it contains code and/or data, a resident library
may either be position-dependent or position-independent. A
library is position-independent if it can be accessed successfully
regardless of its placement in a user’s logical memory; any of
user APRs 1-7 may be used to map a position-independent
library. A position-dependent library, on the other hand, must
always be loaded at a certain user memory address, which
corresponds to a “base” address specified to the Taskbuilder
when the library is constructed (position-independent libraries
are taskbuilt with a base address of 0). RMSRES, for example,
is a position-independent library. All run-time systems,
because they are explicitly built to occupy the highest user-
memory addresses, are position dependent.

In practical BP2 terms, a user program accesses a
position-dependent library via global symbol (i.e., subroutine
entry point) names, while a position-independent library may
be entered by subroutine reference and/or referred to by
COMMON or MAP name. Since BPZ compiled code is position
dependent, BP2 resident subroutine libraries will be position
dependent as well. A main program can communicate with
such subroutines via argument lists, but not through MAP or
COMMON areas. Two or more BP2 jobs can communicate with
each other at super-fast core speeds through an easy-to-build
“shared common” resident library, which must be position
independent and, hence, can’t contain any user-written BP2
subroutines (as we'll see later, elements from BP2COM.OLB
can be incorporated into a shared common area to “flesh it
out” to a 4KW boundary and conserve user address space).

STARTING STARTING ACTVE
DECIMAL OCTAL PAGE
ADDRESS 7 /B/P/Z/C/O/M/// ADDRESS 7  REGISTER
160000
28KW XXX
RMSRES BASIC .
e 140000
5
S 120000
4
16KW 100000
3
oK 060000
2
Bk 040000
1
o 020000
0
OKW 00000

Specimen BASIC-Plus-2 job

Specimen BASIC-Plus job

Figure 1. “Page” organization of a RSTS/E job.



page 64

May/June 1980

FL?T'SPROFFSSIONALRSTSPROFF.SSIONALRSTSPROFESSIONALRSI'SPROFBSIONALRSTSPROFESSIONALRSTSPROFESSl0NALRS'I“SPROFBSIONALRSTSPROFESSIONALRSI'SPROFE’&’SIONALRS'I'SPROFESSIONALRSI'SPROFFSSIONALRS]'SP

Building a resident library of BP2 subroutines.

Consider the following simple BP2 program modules:

OLIY MATN

BASTOR

LISTNH
Lo

!
!
!
!
!
!
!
!
!

!

110
120
130
140
L350
32767

G0

BAGTICR
OLL 8TRING
BAGTOR

LISTNKH

Cal.l.
FRINT X%
Cal.d.
FRINT X4

THIS SIMPLE ROUTINE

&
ETRING

HTRREV

&

STRING

STRREY

T 110

ENI

I BUR STRING

100
110

2767
BAGTCE
OLD STRREY
EaGLC2

LIGTNH

X4
Xb=X$+OHRE (RNDX26+H6E) &

St

(Xd)

(X%

(X4

CALLS TWD SURROUTINES! &

RETURNS & RANDOM STRING OF 10 &
ALFHABETIC CHARACTERS, &

TAKES

A CHARALTER
AN REVERSES

CHARACTER. &

FOR I#%=1% T0O 10%

SUBREND

1 SUE STRREV (X4$)

100
110

120
32747

BASICE

Yot/
Ye=YE4MID XSy 1% 1% &
TZ=LEN(X$E) TO 1% STEF

FOR

XY g
SURBENI

A resident library (MEMRES) containing the STRING and
STRREV subroutines can be built with the following TKB com-

mand files:

(MEMRES.CMD:)

IT CHARACTER

STRING ARGUMENT &

BY &

gt 7

BY SMEMRES/~HDy MEMRES y MEMRES=MEMRE S /MF

FAR=MEMRES !

STACK=0
s

20000160000



May/June 1980

page 65

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

(MEMRES.ODL:)

LROOT UBER

JFOTR BTRING-STRREV-LIEBR
+FCTR LBIRF2COM/LE

+ NI

USERS

LIRR

Once constructed, the main BP2 program can link to the
subroutines in MEMRES as follows:

RUN $TRR
TRE=MATN=MAIN LEIRFICOMALE
TRE>/

ENTER OFTIONG?

TRE=RESL ITR=MEMRES /RW
TREUNITS=12
TRR=AGE=GYIHI7189010311 013
TRR=EXTTOR=512

TRR=//

Rearig

Note that a user program can be taskbuilt to a resident
library which is not ADDed. if you refer to MEMRES.CMD, you
will note that we have requested a task image, a load map, and
a symbol table via our “MEMRES/-HD, MEMRES, MEMRES"
command line. The symbol table file (MEMRES.STB) contains
address information for STRING and STRREV needed to
resolve the CALLs to these subroutines from the main pro-
gram. The RESLIB option in the above TKB sequence directs
the Taskbuilder to MEMRES.STB for this linkage data, and the
Taskbuilder generates the required .PLAS directives to map
our MEMRES library. RESLIB will accept a [p,pn] designation
within the library name field, thus allowing users to link to
resident libraries under other system accounts.

If we were to run MAIN at this point, we would get a
confusing “? Can't find file or account” error message. This is
caused by our Taskbuilder-generated .PLAS directives failing to
attach to MEMRES, which we have yet to load into memory.
Since only specially SIL-formatted files can be ADDed, we need
to use the MAKSIL program to build MEMRES.LIB (MAKSIL is
not built automatically during SYSLIB BUILDing — you may
need to copy MAKSIL from your distribution Kit):

Feaoy

RUM (1y8IMARKSTL.

MARSTL. V7.0-07

Resident Library name MEMRES
Task-twdlt Resident Library 1nwut file
ITrnelude sumiol taeble (Yes/ No) fYﬁ%'?
Sumipol Lable dirneult file <MEMRES.STR:-
Resident Library outsut file uMEMB}&'LIB}?

EMEES buad Lt odn B K-wordsse 4/-wwmu03% in the directorw
MlM#ihoT%h rvﬁam@ﬁ to M&Mh{E*T%h A0

CMEMRES . TSR:T?

Resciy
(Refer to your “RSTS/E Programmer’s Utilities Manual” for an in-depth description of MAKSIL.)
MEMRES can now be ADDed:
RUN $UTILTY

UTILTY  V7.0-07
FAND LIBRRARY L1y 201 IMEMRESC0H/ANNRI 100/ RUW/LUBER
FEXTT

Feadu

This command ADDs MEMRES from the specified account (the default is [0,1]; if the .LIB file is under any other account —
even your own — a [p,pn] must be specified) into main memory, beginning at physical address 100KW. Since BP2 subroutines
“write” on themselves, the /RW switch is needed. Our specified protection code is 0, which allows all users read/write access to
the MEMRES memory area. This code can be tailored to protect a shared library in much the same way as a disk file (see the
“System Manager’s Guide™). The /1USER switch will deny all access to MEMRES for any more than one user at a time. Since BP2
subroutines are not re-entrant, this avoids the probable bizarre and random consequences of simultaneous multiple-user
execution. (Should this occur inadvertently, MEMRES — which may be corrupted in the process — should be REMOVED and
freshly ADDed. The /REMOVE switch will cause a fresh MEMRES copy to be loaded each time a new job attaches to it; in this BP2
context, /REMOVE is a good idea.)

Refer to the previously presented MEMRES.ODL file, and notice that subroutines from BP2COM are linked into MEMRES.
Memory resident libraries must be “seif-contained” — they cannot call subroutines in their referencing tasks. If you were to
specify map file output for MAIN.TSK, however, you would note that BP2COM routines used by MAIN that are already linked into
MEMRES are not copied from BP2COM into MAIN.TSK. Instead, the Taskbuilder resolves references to these library routines into
MEMRES, making it a “mini-BASICS™” as well as a user subroutine area.



page 66 May/June 1980
RSTSPROF‘ESSIONA[RSTSPROFESSl0NALRSTSPROFEGSlONALRSTSPROFBSIONALRSTSPROFESSIONALRSI’SPROFT:‘SSIONALRSI'SPROFES!ONALRSI‘SPROFESSIONALRSI'SPROH-‘.SSIONALRSTSPHOF!-‘SSIONALRS’I‘SPROFESSIONALRSI‘SP

Note the "PAR=MEMRES:120000:60000" option within MEMRES.CMD. This option “names’ the shared region, and specifies
that it should be built beginning at user address 120000 (20KW) for a length of 60000 octal bytes (12KW). This particular
specification precludes the use of any HISEG (other than disappearing RSX), but can be modified to make room for one. Note that the
TKB "% Task exceeds memory limits” warning message accompanies any attempt at building 10 pound programsin 5 poundbags.
You can refer to the map file to determine the necessary base address/length adjustments, then re-TKB the library.

Memory-resident overlays.

Single-user-only subroutine libraries offer few advantages to the BP2 programmer; if not for memory-resident overlays,
there would be little point in discussing resident libraries of BP2 subroutines. Consider the following revision to MEMRES.ODL:

s NAME X
s ROOT X-USER
SRS SFOTR KT ISTRING-LIBRy STRREV-LIER)
P +FOTR LBIRBPZCOMALE
» NI

As with disk overlays, the STRING and STRREV subroutines are assigned to the same user logical address. Unlike disk
overlays, global address reference to these overlaid program segments is accomplished via memory mapping directives rather
than disk READs from a task image file. This overlay approach requires the following modified MEMRES.CMD:

SY IMEMRES Z~HDy MEMRES » MEMRES=MEMRES /MF

FAR=MEMRES 1 120000140000
STACK=0

GRLRE STRING
GRLREF=5TRREVY
v

Note that less user space is required (in this simple example, the saving is negligible), and that our subroutine names mustbe
explicitly declared as global references. This is required because, by “overlaying” STRING and STRREV on top of an empty “dummy"”
root segment (X), we eliminate the automatic placement of global references to STRING and STRREV into MEMRES.STB by the
taskbuilder. Note also that BPZCOM.OLB modules, since they are not in the root of our overlay structures, can't be shared by the
main program. While we've saved some space by overlaying, we've forced an extra 3KW of BP2COM routines into MAIN.TSK.
Referring to our load map, we can include these BPZCOM OTS routines into the root of our MEMRES overlay library by brute force:

Subscribe NOW . . . don't miss the August/September issue of the RSTS PROFESSIONAL
Fill-out this form and mail to: RSTS PROFESSIONAL, Box 361, Ft. Washington, PA 19034

0O Please enter my subscription for one year (4 issues) tothe RSTS Professional. | have enclosed my check for $20% payable in U.S. dollars.
O Please enter my subscription for one year (4 issues), at $20%, to the RSTS Professional. Bill me (for U.S. dollars) at the address below.

Name

Address

City State Zip

Telephone ( )

Please send Back Issues circled: Vol.1,#1, Vol.2, #1, Vol.2, #2 [%7.50 per issue enclosed. OBillme at $10 perissue.

FREE CLASSIFIED AD WITH SUBSCRIPTION!! Your first 12 words are absolutely FREE, only$1 per word thereafter. Use space below.

L Jl JL JL JL I JL JL JL JL sl IL J

$100 $200 $300 $400 $500 $600 700 $g00 $g00 $1000 $1{00 $1200 va2.z2




May/June 1980

page 67

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

ok
L
i3
& N
I e .~L.h)e" L.‘.l'i':i:}'{. UN].
i H FESTEOS
s B HHCR
i3 B ERROR
i B JMOVE
i3 B STHOS
i i LRI
N i IHERT
A 4 FRAaND
i TR OLEBIE iy L&::"Laf':]l{m:;
i3 Th OLEIE COMALEBEIESTETA
i3 JFOTR LRBIE OHALERIESTHMED
L SAETR LEIBPILOHALEISIE
i SELTR OLES :ui’h’ ..I-o'thJU i
{3 s L Lu2 » WEIEICEGL
R SFUTR OLES LB f“?r FER
G SFOTR LB 2 .-d:"lx LEBIEBETRS
i SFOTR LEBEIBFZCOMALEBISBXTRA
s SFOTR LEBIERF ""‘L,,Ln"h LEsEETLES
Wl SFOTR LBIEP2COMALEBIECNTRL
Wi SFOTR LEIBPIZOOHALEISCALLR
g SFOTR OLEBIERF ORALBISBINIT
53 FOTR LBIBFICOMALEISIVOPN
& SFOTR OLEIE SOmALEBEICULT
i ' i:'l:'f"'"’ LBIRPCONALEISICRORP
" LEIEHPZCOPMALEI$ICREL
LEIRFECOMALBISICFES
+FETRE LEI BRFICURZL Q.F\L@Lm.
HFOTR LEBEIREPECOMALEBISAVREG
« ENTH

This maneuver at once reduces the physical size of
MEMRES by 3KW (BP2COM appears only once within the root
segment of MEMRES, rather than once in each overlay seg-
ment), and the logical size of MAIN.TSK by 3KW (because
MAIN.TSK can now use BPZCOM routines contained in
MEMRES). As the number of overlay segments increases, this
device can become very important indeed.

Of course, these “memory-resident overlay" libraries can-
not be shared, and depending on program size can demand
large regions of precious physical memory. Certain “number
crunching” applications involving the invocation of very large
subroutines within program loops can be constructed using
memory resident overlays, and will run faster than a corres-
ponding disk-overlay implementation. (Read the resident
library chapter of the Taskbuilder manual before striking off
to convert your number-crunchers; there are annoying restric-
tions to using AUTOLOAD with memory resident overlays in a
resident library which make direct translation of disk overlay
specifications somewhat risky).

o (o o (e o 8 o T oo o J o ¥ e e T

Shared common.

Probably the most useful application of resident libraries
in a BPZ environment is the “shared common™ area. Using
shared common, a MAP or COM in one program can be overlaid
onto MAP or COM regions of the same name in one or more
other programs — thus, separate RSTS/E jobs can exchange
large volumes of data at memory cycle speeds.

The following trivial assembly language program defines a
four-byte program segment named LINK:

.TITLE TEST

.PSECT LINK,D,.RW,GBL.REL,OVR
.BLKB 4.

.END

The .PSECT MACRO directive is analagous to the BP2 MAP
statement. The .BLKB directive allocates a “block” 4 bytes
long (the “.” after the 4 specifies a decimal rather than octal
byte count).



page 68

May/June 1980

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

Assuming that PIP or an editor were used to build TEST-
.MAC containing the preceding MACRO program, a shared
common area by the name TEST.LIB can be built as follows:

RUN SMAC
MAC > TEST = TEST
MAC > 1Z

Ready

FUN (1l 8YMARSTL
MARS L U7, 007
2 idernt Library neme? TERYT

niagl bable (Yo
inewt file -

T lude

dicternt L
B T N R W T

R gt

RUN STKB

TKB > TEST/-HD/PI, TEST,TEST = TEST
TKB > /

ENTER OPTIONS:

TKB > PAR = TEST:0:0

TKB > STACK=0

TKB > //

Ready

et d L Resident Librare dneut file STEST.TSK:T

: Nod) SYes:
: GT. 87T
pravy oubeet File <TES
Kewordsry O swumbols
T THK renamed Lo TEST.TSKC40:

. "E}

LIRS

in the directorw

Two sample BP2 routines which can communicate via TEST:

OLT WRITER

BaGIo?

LITSTNH

19 POWRITER <. THIES ROUTINE

WRITES RANDOM NUMBERS &

POINTO THE "LINK® SHARED COMMON AREA. &

f
100 COM (LINK)Y X
100G X=RND
110 X=RND &
UNTTIL. X=0
X247 END

BAGTLZ
OLIE READER
FAGTOR

LASTNH
16 /

1
100 COM CLLINKY Y
116 2=y
120 IF 290 THEN &
FRINT Y &
N YA 'E
133G GO TO 120
R2747 END

BAGICE

READIER .. THIS ROUTINE DISPLAYS THE CONTENTS OF THE NUMRER &
POBTORED TN "LINK® WHENEVER

IT CHANGES, &

(Note: these routines must be compiled with the /NODOUBLE
switch, if double precision floating point format is the compiler
default.)



May/June 1980

page 69

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

These programs can be linked to TEST.LIB with the follow-
ing taskbuilder commands.

RUN $TRE
TREAWRITER=WRITER  LEIBRP2COMALER

., /
£

TER OFTIONSG?
B RESL T Re=TEST AW
LINE T2

READER=REATER LEIBFECOMALE

POORPTIONS?
FRESLITE

B TEST /RO

Freariy

After TEST.LIB is added to the system, run READER and
WRITER simultaneously using two terminals (you can “DE-
TACH" WRITER, if you like). Notice that adjusting the run-burst
of these jobs significantly affects the READER display rate
(you may need a high-speed CRT to see a difference). This is
because both jobs are compute-bound at the same priority,
and will be scheduled on a “round robin" basis as their run
bursts expire.

Transfers between jobs — particularly involving large
data volumes — are substantially faster via shared common
than by way of message send/receive. Also since transfers are
direct from task image to task image, monitor overhead is
completely by-passed and system loads are correspondingly
lightened. In such “transaction processing” applications, how-
ever, the programmer assumes responsibility for coding the
“handshaking™ necessary to synchronize jobs communicating
through a resident common. In our simple example, achange in
the state of the contents of a shared MAP is used to “signal”
printing within the READER job. In general, however, two or
more compute-bound jobs “looking” for changes in state indi-
cator variables will impose quite a system burden. Alterna-
tively, the availability of data for processing in a shared MAP
can be signalled by sending a small interjob message, and
completion of processing can be acknowledged in the same
manner.

The Taskbuilder commands we used to link WRITER and
READER to the shared common area TEST include provisions
for specifying the type of access required (/RW in the RESLIB
command requests read-write access; /RO specifies read-only
access). This specification is made independently of the protec-
tion code and /RW switch specified when the common area is
ADDed, and consequently access violations are handled differ-
ently by the system depending on whether the error is
detected when the accessing programis initially loaded (**?Pro-
tection violation™ immediately after RUN), or while it is running
(*?Memory management violation” during program
execution).

As an added suggestion, a shared MAP area, associated
with an RMS file opened in one job, can be interchanged with

another job which doesn't use RMS. Certain RMS-intensive
applications which could benefit from non-overlaid RMS (or
RMSRES), but can't afford the user space, might consider an
“outboard RMS" processor routine which, upon request,
READS/WRITES/UPDATES RMS files using record information
contained in shared MAPs.

When building a shared common area, remember that the
.PSECTs you define in the shared library must be at least as
large as the MAP or COMMON areas they re-define within a
referencing task (TKB will warn you with an “%Incompatible
reference” message if they aren't). Also, remember that when-
ever you make a change to the size of one or more .PSECTs
within a resident common, it and all of its referencing tasks
must be re-built.

Incorporating OTS routines within a resident common area.

Consider our TEST.LIB shared common area. Note that,
because we want to reference it by COM or MAP area equival-
ence, we need to Taskbuild it with the /Pl (position-
independent) switch. Remember that, since our MEMRES BP2
resident subroutine library was position-dependent, we could
pass arguments to STRING and STRREV but could not pass
information to them via MAP or COMMON. Also note that,
because resident libraries occupy 4KW multiples of user
address space our TEST shared common area occupies 4096
words of user space, while actually making use of only 2 of
them. In practice, few MAP areas will align perfectly to 4KW
boundaries, and the resulting wasted space may often prove
prohibitive.

By playing a few Taskbuilder games (borrowing from the
re-build procedures for the BASICS shared library-check your
BP2 Installation Guide and BP2 distribution kit), we can incor-
porate commonly used BPZCOM.OLB routines into our shared
common area to “flesh it out” and make better use of the
space within it.

The procedure is simple:

1. Compile a sample BP2Z program (one of the referencing
tasks for your planned resident common is a good bet).

2. Taskbuild it and obtain a .MAP file. For example:
RUN STKB
TKB > WRITER,WRITER=WRITER,LB:BP2COM/LB
TKB > 7/

3. Get a listing of the .MAP file, and look for the heading
SECTION on the left near the top of the first page. Note
the heading TITLE on the right side of the same line.

4. Under the heading SECTION, look for
BP20TS:(RW,I,LCL,REL,CON).
Entries in this column are in alphabetical order, so
BP20TS should be close to the top.

5. BP20TS is the name of the .PSECT into which all
required BPZ system subroutines are collected. In the
TITLE column under this BP20TS entry is a list of
modules which were required by your sample routine.



page 70 May/June 1980
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

6. Use Taskbuilder “BP2COM/LB:" to include these modules from BP2COM into your shared common area. Using WRITER
and TEST, here is an example command file:

4 I... lx H flé .’:ES 'I H...x &
: UM LB ETORCL
’F lsi"li f("'l" HU

L f
3 ,(IIM;I }13! J(,..iﬁlI-f-i
FRFICOMALEISAVRG

FLE&GQOLIR2G0O00

k. N H I\ ! .l. I...I... i.)l" i ;i ICATION FOR RESIDENT LIBRARY 7T TEST
ENTER 3 CHARACTER CCLAMIR MNaME 7 BPZ
THE PSECT FOR YOUR LIBRARY IS BRAGOTH.

e sty

(Always answer “BP2" to the “ENTER 3 CHARACTER CCL/MCR" prompt, whether or not the CCL name you specified when
you built BP2 V1.6 was “BP2").

While our TEST.MAC program is position-independent, BPZCOM OTS routines are not. We therefore, use both the /PI
switch and non-zero base and length values in the PAR command to, in effect, build a curious hybrid resident library which
has a position-independent symbol table (including PSECT addresses), but which is linked to a specific user memory
address. Since .PSECT names within shared libraries (with position-independent .STBs) must not be the same as any in a
referencing task (except, of course, for the shared COM/MAP), RESSTB is used to “tweak” the symbol table file entry for
BP20TS, changing it to BASOTS. Note that the alphabetical order of PSECT names within the symbol table must be
preserved — your shared library must not use any MAP/COM names between BASOTS and BPZ20TS. Also, modules
included from BP2COM must be listed in the same order as they were found in the .MAP file.

8. The TEST shared library may now be ADDed and linked in the manner outlined earlier.

**Remember: these procedures are release-dependent. They work with BPZ VI.6, but may not with previous or later
releases.**

Omission of the RESSTB step will result in “LOAD ADDRESS OUT OF RANGE" errors when Taskbuilding tasks against shared
common area containing OTS routines. Also, any “undefined global reference” errors accompanying the TKB for a shared common
are probably the result of omitting or misspelling a required OTS module name.



May/June 1980 page 71

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

PLAS directives.

So far, we've confined our discussion of resident libraries to the Taskbuilder commands and options required to build and link
to them. While a programmer in this environment is totally unaware of the dynamics involved, the Taskbuilder, in fact, uses .PLAS
directives to accomplish this linkage. Armed with some knowledge of MACRO and the .PLAS monitor call formats, a systems
programmer can dynamically map a resident library up to 32KW in size, mapping it 4KW at a time (use smaller segments, if you
like — the mapping can take place beginning at any 32 word boundary for a minimum length of 32 words). Such a program can, in
effect, directly address 60KW or more of user space to implement some exotic “virtual array” scheme for use in some scheduling
or array processing application (remember, a job can “map” as many as five resident library areas at once: that's access to more
than a quarter megabyte of space). All the information needed can be found in your “MACRO Programmer” and “Monitor
Directives” manuals (refer to your “BP2 User's Guide” for information on calling user-written MACRO subroutines).

CONCLUSION

The Taskbuilder is slow. It takes forever to assemble a runnable core image. Now, at last, with RSTS/E V7.0, the Taskbuilder
offers you something to read and think about ... while it's Taskbuilding. Have fun.

| CHANGES????2?? l
] Are you changing addresses? Please let us know so you won't miss one issue of the RSTS Professional. l
I FORMER PRESENT/Near Future I
I Name Name ’
E Address Address I
| City/State City/State {
I Zip Zlp |
g e e S W s S S S S PO S S e R SO e R S |
DEC USERS — SYSTEM PROGRAMMERS

PASCAL

SAVES TIME / STRUCTURED / EASY TO LEARN / EFFICIENT

CSCI distributes OMSI Pascal. FEATURES INCLUDE:

OMSI Pascal offers incomparable e Full, Standard Pascal
features for Systems and general Powerful Source Debugger
programming. Call us and explore Profiler

a modern, productive software Direct Access |/0

tool. Available for RSTS/E, RT11 External Pascal Subroutines
and RSX. In Line Macro 11 Code

COMPUTER SOFTWARE CONSULTANTS, INC.
200 BOYLSTON STREET, CHESTNUT HILL, MA 02167
(617) 964-4316

OMSI PASCAL is a registered trademark of Oregon Minicompter Software, Inc. RSX, RT11 and RSTS are registered trademarks of Digital Equipment Corp.




page 72

May/June 1980

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

WORD PROCESSING WITH DEC COMPUTERS — Hints and Kinks

with special instructions with respect to procedures
to be followed with specific routines or documents.
In fact, one can have a separate library entitled
HELP. (To access the library, the library document
is changed to [diskette].HELP, from the Editor Menu,
which automatically will change the library docu-
ment.)

SETTING UP THE LIBRARY DOCUMENTS TO DELETE THE HARD
RETURN

There are two methods available to avoid hard
returns following a Library Document call. (l:e:y
where special formatting is required the formatting
must follow the library field identifier in order to
be imbedded.)

The first method, of course, is to have the library
information begin immediately after the field
identifier (<<field>>Data xxx).

The second utilizes the soft return described in
preceding sections. The following is an example:

5 e A==
<<KDOCUMENT >>
i, (e S e S Ro—m
TITLE
(data)
<K

Without modification, if DOCUMENT is referenced by
the library an extra return will result, as creation
of the document necessarily required a hard return
after the field identifier.

However, with the insertion of a new ruler (a dummy
ruler is indicated, but it should represent a
required format) the hard return can be changed to a
soft return (by moving to the beginning of the line
immediately after the field identifier and striking
the RUB CHAR OUT key) and, when referenced, the soft
return will be ignored. The imbedded ruler also will
appear.

USE OF LIBRARY DOCUMENTS FOR EXTRA RULER STORAGE

Quite often the ten ruler storage availability of
the Word Processing System is inadequate, either
because more rulers are required or because it is
difficult to remember which is which. There is an
alternative.

Using the same technique for removing the hard
return described in the foregoing sections, rulers
can be saved in a library and can be called by
document type. This especially can be helpful for
unusual documents, but also is helpful for general
documents. The following are examples of two
rulers. Expansion of the concept is quite unlimited
and, obviously, up to the individual user.
<KLETTER>>

L--=P=——=-T-- == . Jommma e
<«

<<SCHEDULE>>

R U, SISO R e NERESna. .—-=>R
<«

Naturally, a schedule of all of the rulers can be
part of the HELP library.

. continued from page 25

SPREADING A TITLE OR HEADING

One additional note. The soft return also can be
used to spread a word, or series of words, accross
an entire page. Provided that the RIGHT MARGIN is
set with a J (justification), everything on the soft
return line will be spread across the page if the
next line commences with any type of an imbedded
command (e.g., ruler, print control, page marker,
etc.). Example:

[P Te———— T A Jemm e
(Miscellaneous text to the next line)

By creating a soft return (i.e., using the RUB CHAR
OUT at the beginning of the first line after "TITLE"
in the above example, the word "TITLE" will be
spread accross the page as follows:

T jE T L E
In order to create the "soft" return, it only was
necessary to modify some portion of the ruler, imbed
it and then delete the hard return with the RUB CHAR
OUT from the beginning of the line.

SOME ADVANCED FEATURES FOR INDEXES (INDEXI?)

In a preceding section of this paper, we have
discussed the manner in which an index or a Table of
Contents can be created, using the List Processing
features of the Word Processing Systems. Here we
will discuss, briefly, two enhanced features --
including page numbers and sorting.

To include page numbers it is, of course, necessary
to have a "finished" copy of the document, as you
will have to insert the page numbers after each word
to be referenced.

Using a "finished" copy, we mark each word which is
to become part of the index. Using the techniques
described above, we enter the field identifier
before the word, or phrase, and follow it with a

space and the page number. Then, the terminating
left/right arrow and dummy field identifier follow
the number. For example, we are indexing on the

phrase "List Processing":
[Text ... <O<IdList Processing 22<0<X> ...]

In a long document, we do not attempt to identify
each page where the word or phrase appears, but
merely repeat the process.

Depending upon how involved the index may be, we
will either run the List Processor on the <I> field
and pick up every instance using a "sub list" which
will be SORTed, or we will use a conditional run,
based upon the first letter of the field creating a
semi alphabetical listing.

[The "sub-list" is quite simple. It is identified
as <<I><I>.]

If we create a long index, we then SORT the "sub-
list" index using the SORT package which is avail-
able through your DEC WPS representative.



May/June 1980

page 73

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

wWhat's this? You say your rep doesn't know what you
are talking about? If you have any difficulty, send
this author two blank diskettes, a returnable mailer
AND RETURN POSTAGE, and we will send you a copy of
the SORT package and its instructions. Two disk-
cettes are required as the SORT is in DIBOL and
operates on C0S-310, whereas the instructions are on
a WPS diskette.

Upon completion of the SORT, it is a fairly simple
matter to "cut" the repetitions and allow their page
numbers to flow onto the first use of the term.
(Using a RIGHT ARROW ">" as thel right margin --
before the R or J -- will allow these numbers to
flow backwards so you can have several numbers, with
commas, on the same line.)

PERMANENT CUTTING OF LONG SECTIONS OF A DOCUMENT

As you may realize, it is not possible to "cut" more
than about 2-1/2 pages of a document at one time.
If you want to delete several pages, and do not have
to save them for any other purpose, then this can be
accomplished with a single operation without concern
over the actual 1length of the material being
deleted.

The procedure requires that you proceed to the
starting point of the "cut" (which can be the end or
the beginning of the "cut") and press the white SEL
key. Then, immediately press the red CUT key. This
will remove all data from the paste buffer.

Press the white SEL key again and proceed to the
point where you wish to end the cut. Press the GOLD
REPLC keys (GOLD and '). This will replace all of
the data between the SELect position and your
current place with a single null. The cut data is
not replaceable so do not use this as a '"cut and
paste" routine. [For long "CUT AND PASTE" routines,
refer to the section above which discusses changing
your document to a library document.]

TRANSPORTING RULER AND PRINT SETTINGS TO NEW SYSTEMS

Often it becomes necessary to transport your ruler
and print settings from one system diskette to
another. There is a fairly easy way to accomplish
this.

For the ruler settings, you merely create a single
document using your old system diskette and then
begin to enter ruler settings separated by some
meaningful code so you can identify the settings
when used on the new system. E.g.:

0

L-==P—=-T-==== Demm - < v =R
1

D---P-==eT=mm—- Tem——- e =R
ete,

Placing this document diskette under control of the
new system diskette (and the document may, of

course, reside on the new system diskette) you
merely advance below each ruler, enter GOLD RULER
and then SHIFT [number] to preserve the ruler.
Continue with each ruler until all 10 have been
transferred over (or as many as are needed).

NOTE: The same procedure can be used in your
LIBRARY to save more than ten rulers, or to call
rulers by document name. Just enter the RULER NAME
between the arrows (e.g. <KLETTER>>) and follow the
identifier with a return. Place the desired ruler
under the identifier, then enter a single RUB CHAR
OUT to remove the hard return and enter your end of
field marker (<<). Now, when you call the RULER
fron the LIBRARY, it will appear where you want it
without extra returns.

For PRINTING COMMANDS, create up to ten separate
documents and merely file them away. Go into the
PRINT MENU for each document (either as you create
them and afterward) and call up your PRINT COMMANDS
from your old SYSTEM diskette. Save the commands on
the document by using the GOLD MENU. Placing the
diskette with your "new" SYSTEM diskette, you merely
begin to print each of the documents. When in the
PRINT MENU enter SS nn to save your PRINT COMMANDS
as reflected on the particular document.

The procedure is also available for special printing
requirements on documents where there are insuffi-
cient printer commands (i.e. -- 10) available. Just
identify a document with the name of the particular
type of printer commands you want to save, and you
always can assign that to any of the numbers you
wish for special purposes. (We find that reserving
control number 9 for this purpose works out Jjust
fine.)

SUMMARY

DEC's Word Processing Systems (and even those which
utilize DEC equipment) clearly are among the most
powerful available on the market today. The
potential -- indeed the need -- for improvements is
all too obvious, if DEC intends to remain a serious
contender for the Word Processing Market.

In the meantime, there are numerous routines which
are available in the existing system which

can make it work better and faster for you, and that
is what automated word processing is supposed to be
all about.

The examples provided here are but a few of the many
work saving features which are available. It
appears that these examples have never

previously been documented by DEC, which really is a
shame.

We do hope, however, that the foregoing will be of
some assistance to the Word Processer user and that
this Article may become part of your Word Processing
Manuals.



page 74 May/June 1980

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION ALRSTSPROFESSIONALRSTSPROFESSIONALRSTSP

Send Classified Ads to: RSTS Classified, P.0. Box 361, Fort Wash-
ington, PA 19034. ($1.00 per word, first 12 words free with one

CElANSSEREFIEEED

CALL/370 TORSTS CONVERSION AID—
Obiject file on Mini-Reel with Documenta-
tion. $50. Call or write to: TCI, 6107 W. Mill
Road, Flourtown, PA 19031, (215) 836-
1406.

RSTS INTERNALS, TUNING, RT11/RSX
MACRO under RSTS consultation & Pro-
gramming — call MACRO MAN, Bob
Meyer, 609-298-9127.

WATCH THIS SPACE for Software
Announcements from Interactive Soft-
ware Systems, Denver, Colorado (303—
771-0939).

HELP start Detroit area RSTS SIG. Call
Keith Kapera at (313) 559-0890.

$200 RSTS/E* WORD PROCESSOR
CBEDIT.BAS

Single Basic-Plus* program with CRT
input, window edit and file save. Add,
locate, change, replace, delete, block
move & copy, standard paragraph append,
etc. VT* series and Hazeltine terminal driv-
ers. Others easy to add.

Fully formatted output (margins, justify,
center, underscore, headers, page
numbers, etc.) to terminal, disk or line
printer. Bi-directional driver for Diablo.
We use it daily for all our secretarial work.

9-Track $200 RKO05 $260 ppd

T.F. Hudgins & Assoc., Inc.
P.O. Box 10946, Houston TX 77018
Woods Martin — 713/682-3651
*TM Digital Equipment Corporation

Waiting On Delivery
of ADEC A120?

Avoid the hassle by upgrading your LA36 for 1200
baud operation with a DS120 Terminal Controller.

The Datasouth DS120 gives your DECwriter® II the high speed
printing and versatile performance features of the DECwriter® III
at only a fraction of the cost. The DS120 is a plug compatible
replacement for your LA36 logic board which can be installed in

minutes.
©165 cps bidirectional printing
eHorizontal & Vertical Tabs
*Page Length Selection
©110-4800 baud operation
#1000 character print buffer
eX-on, X-off protocol
oSelf Test

Standard features include:

®#RS232 interface

20 mA Current Loop interface
eTop of Form

¢ Adjustable Margins

eDouble wide characters
eParity selection

eOptional APL character set

Over 4000 DS120 units are now being used by customers ranging
from the Fortune 500 to personal computing enthusiasts. In
numerous installations, entire networks of terminals have been
upgraded to take advantage of to-

day’s higher speed data com-

munications  services. LSI
microprocessor  electronics
and strict quality control
ensure dependable per-
formance for wyears to
come. When service is
required, we will respond
promptly and effectively.
Best of all, we can deliver
immediately through our
nationwide network of
distributors. Just give us a
call for all the details.

DATASOUTH COMPUTER CORPORATION

4740 Dwight Evans Road ® Charlotte, North Carolina 28210 ® 704/523-8500

year's subscription.)

16K DEC 8E *4500%. 312—584-6622.

RIMS/MPG, BASIC-PLUS/DIBOL source
code generator/report writer. Call 412-
373-0500.

MEN’S CLOTHING MFG. on RSTS inter-
ested in PGM System Exchange. S. Ruby,
(514) 382-5000.

ARM Systems Implementers announces:
Data Management Tools, CRT Program
Generators and Menus. 5190 NW 167 St.,
Miami, 33014.

WANTED: W.I.S.E. replacement. Bill
Roberts, Pasadena, CA, (213) 449-1745.

DEC PDP 11/20 for sale 4K like new $2500.
Computer Timesharing Serv., Nashville,
TN (615) 244-6094.

DIBOL SUBS and STRUCTURED PRE-
Processor. Bob 314/725-2750, Clayton,MO

Desire contact with insurance application
software users. (800/535-8796 Ray Enright)

List of Advertisers
Able Computer

Technology, Inc. ........ [.B. Cover
Advanced Digital Products ....... p. 23
AMCOE s 55 56 s 5 05 o5 £ 0515 sl 6 0 3 p. 2
Brookvale Associates ........... p. 34
Computer Software

Consultants, Inc. ............. p. 71
Datalease: a6 maiws s on (center) p. 38
Data Processing Design, Inc. .. B. Cover
Datasouth Computer Corp. ...... p. 74
Data Systems Services .......... p. 76
Enterprise Technology Corp. ..... p. 52

Evans Griffiths & Hart, Inc. . pp. 15, 45
Finar Systems Limited .. (center) p. 39

Grossman Graphics ............ p. 53
Logical Systems ................ p. 55
M Systems, Inc. ................ p. 34
INOrdata, su: e o o« e m s s e s Ge p. 5
Oregon Software ............... p. 75
Plycom Services, Inc. ........... p. 13
Raxco,Inc. ... ... .. oiiilt. p. 16
Ross Systems, Inc. ......... I.F. Cover
Scientific Placement, Inc. ........ p. 27
Southern Systems, Inc. ........... p. 1
System Industries ............ pp. 6, 7
TransNet Corporation .......... p. 53
Unitronix Corporation .......... p. 50




May/June 1980 page 75
RST: SPROFESSIONALRS‘ISPROFESS!ONALRSTSPROFESSIONALRSTsPRoFESSIONALRSI'SPRoFBS!ONALRSISPROFESSIONALRSTSPROWSS|0NALRsrspR0FE55|0NALnsrspnoFass;oNA|.RsnsPRor‘assmNALRsrsPRop'msmNALRsrsp

What's the difference
between Basic and Pascal?

COMPARE THESE APPROACHES TO DRAWING A CIRCLE

n BASIC in Pascal

“Thisiseasy...” “The simplest circle drawn with line

segments is a regular polygon ...”
60 MovE RO

10 FOR T=0 10 360 STEP 25 I
20 DRAV.[ R%cosm, R¥ SIN (‘T—’) ::rzll}st Sides = 16; Pi = 3.14159265;

N :integer; Theta : real;

,3° NEXT T beIS\I/[iIOlve (X+Radius,Y);

for N:= 1 to Sides do begin
Theta: = 2 * Pi * (N/Sides);
" .1y . Draw (Radius * cos (Theta) + X,
Oops, didn't quite meet ... Radius * sin (Theta) + Y):

end;
end;

... but that’s easy to fix.”

160 MOVE RO .
e FOR T=0 To 36c” stER 25
120 DRAW R¥60SCr), Rx SINCTD
30 NEXT T

“Oh, now it closes ...
in fact, it overlaps.”

Programming by trial and error Programming by design

GET IT RIGHT THE FIRST TIME

INTERNATIONAL T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
DISTRIBUTORS

1
: If you like the feel of precision tools, give us a call or return this coupon. |
|
| Name |
| Firm |
Valley Software | l
England: Stafford;
Hourds Computing Ltd. : l
|
' [
|

Australia: Sydney;
Network Computer Services
290-3677

Canada: Vancouver;

0785-44221 City
T 2340 SW Canyon Road ° Portland, Oregon 97201
m:ei éurp:r;tion (503) 226-7760 » TWX 910-464-4779 State Zip

03-345-1411 = e e e e e e e e e e e e e — — i — - — — ———— — —— — — — — l



" Double Your Disk Capacity
- For Half DEC’s* Price

Only System Designed Just For PDP-11 Family

Designed exclusively for DEC’s UMNIBUS or MASSBUS CPU's.
On the UNIBUS, it's just one card that plugs into any spare SPC
slot. On the MASSBUSS, four cards plug into any spare
existing RH70 standard back plane.

Same Disk Drive as DEC RM02-03,
RP0O6 and RM04-05

We use the same disk manufacturers as does DEC. The RP06 is
the Memorex 677 200MB disk drive, the RM02-03 is the 9762
CDC 80MB and the new RM04-05 300MB is the CDC 9766.
Only the LOGO is different.

Compare These Prices

DRP0O6 200MB Slave $14,995
DRJP06 200MB + Controller $21,995
DRWP0O6 200MB + Controller $23,995
DRM02-3 80MB Slave $ 8,995
DRJM02 80MB + Controller $15,995
DRWMO03 80MB + Controller $17,995
DRJMO04-5 300MB Slave $16,995
DRJM04 300MB + Controller $23,995
DRWMO0O5 300MB + Controller $25,995

*PDP and DEC are reqistered trademarks of Digital Equioment Corporation

Call us for all your
DEC nceds

‘The New Standard For PDP-11
Disk System Technology

Transparent to All DEC Software,
Diagnostics and Drivers

You bet! Use your existing Software . . . no change needed.
Runs all DEC's Diagnostics plus has its own. Fully emulates
DEC disk Drivers.

Worldwide Installation and Maintenance

Through Data Systems Services, maintenance and installation
is provided via Memorex or CDC for both Drive and Controller.
We also offer full PDP-11 system support.

Full Media Compatible?

That's right! You can read or write on our drives. Put it on
DEC's and it will play or vice versa. TRULY MEDIA
COMPATIBLE.

ATA
YSTEMS
ERVICES

22642 Lambert
Suite 408

El Toro, CA 92630
(714) 770-8024



Now you can
make your

PDP-11 run
faster than

evetr.
Its

in the
cards.

If you’re looking for a "W
your present PDP-11 instead"68ipgrading to
the next computer, we can give you the boost
you need. It’s in the cards. It’s in the cards we are
about to put in your hand. It’s in the single-board,

cache-buffer and add-in memory cards we've
already put on the table for people like you.

The biggest bargain in the industry
is our SCAT/45, an add-in memory
which installs up to a full 128K of

high-speed memory (in 32K word incre-
ments) on the FASTBUS of the 11/45,
11/50 and 11/55 while using only % the
power and % the space at about % the cost
of the DEC equivalent FASTBUS bipolar
memory. SCAT/45 can increase your 11/45
processing speed up to 300%!

You'll be just as impressed with our incredible
8K cache. Available as CACHE/434 and
CACHE/440 for the 11/34,11/34A,11/35

and 11/40, it is the 8K cache with

everything. It has byte and address

parity, upper/lower limit switches, on-
line/off-line manual switch control,

activity indieator lights, 8K bytes of memory
(4K words) providing a capacity four times
that of competitive units, and a backplane
interconnect module replacement design which
requires no extra space in your computer.

The incredible cache and companion buffer, CACHE/
45, increase processing speeds as much as 100% in the
11/34,11/34A,11/35,11/40 and 11/45. Find out how to
get more out of your present PDP-11. Write for details on

our complete line of memory, communications and general-
purpose products. Able Computer. 1751 Langley Avenue, Irvine,
California 92714. (714) 979-7030. TWX 910-595-1729.

Able, the computer experts

PDP, FASTBUS and DEC are registered trademarks of Digital Equipment Corporation.




Respons' ve Word Processmg
~ Take Our Word For It.

e PDP-11 £ » * Concurrent data

— processing
@ I- i
Multi-terminal - e Low cost
: / & -,v"’v.

WORD-I1 is proven word processing . nal cost of WORD-11 is much lower than
power. Power responding to your needs. | similar systems. Whether as an addition to
Designed to run on Digital’s family of @/ i1 ; your current system or as a dedicated word
PDP-11 minicomputers, WORD-11 sup- '8 processing system, the cost of WORD-11 is
ports up to 50 inexpensive VT52 or VT100 | e agreeably low. DPD can also provide

terminals and uses a wide range of high accounting and utility software for your
speed and letter quality printers. RSTS/E System. Call or write for infor-

WORD-11 is productivity. And mation on our software or for details on
efficiency. By running concurrently WORD'l turnkey systems. Ask for our free bro-

with data processing, WORD-11 chure, today.

enhances the overall effectiveness of your system. Data Processing Design, Inc., 181 W. Orange-
And WORD-11 is a variety of useful and thorpe Ave., Suite F, Placentia, CA 92670, (714)

unique features. Such as the multiple dictionary 993-4160. . .

capability that detects and highlights spelling errors. Data Processing Desngn, Inc.

Specialists in Digital Equipment

WORD-11 is also inexpensive. The per termi- sales and software applications.

PDP-11, and RSTS/E are trademarks of Digital Equipment Corp., Maynard, MA.



