RSTS PROFESSIONAL

Volume 1, Number 1

November/December 1979
$7.50/issue, $20.%0/year

INSIDE:

[0 Editorials

[0 Structured
Programming

[0 Disk Directories

[0 Programming
Standards

(1 Why TECO?
[0 How TECO?

[1 Double Precision
Integers

[0 MACRO-11
[0 Timesharing 1965

0 11/70 in a
Hospital Radiology
Department

[1 Games

[0 In-House
Timesharing

Interactive
Data Base Management

INTAC is a new concept for data
storage and retrieval that features
an easy-to-use question and
answer format, built-in edit rules,
multi-key ISAM data access, inter-
active inquiry and a unique report
generator.

Financial
Modeling

MAPS, recognized worldwide for
over five years as a leader in finan-
cial modeling and reporting, is
used to construct budgets, finan-
cial forecasts, consolidations and
“what if” analyses.

Two
Distinguished
Products for
PDP-11

Users...

INTAC"
MAPS"

Ross Systems, with over seven years of
proven capability, now offers these two
products to current and prospective
PDP-11 users. INTAC and MAPS enable
business managers to produce instant
reports themselves, and relieve DP man-
agers from the pressures of special
requests.

Ross Systems offers these management
tools on our timesharing service, for
license on existing computers and as
part of a complete, in-house timesharing
installation.

Call us collect for more information.

10SS SySIems

rmecorporated

1900 Embarcadero Road, Suite 208, Palo Alto, CA 94303 e (415) 856-1100 » Other offices in San Francisco and Los Angeles

November/December 1979 page 1
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

w
>
g

“Registered trademarks of Digital Equipment Corp.

Prove to me that | have nothing to worry about. Tell me about the My computer is a
following printer system(s):

My requirements ar immediate . 36months _.____information only.
1 200 lpm impact matrix

{1 the B series (300 or 600 Ipm band) Name Title
3 the 2200 sexies (300, 600, 900 lpm drum)

[the 1200 series (600 to 1200 lpm Chain Train)
[1 the 2550 (1500 lpm charaband)

{1 Serial Interfacing City
U] Parallel Interfacing Telephone (

Compant

Addre:

page 2

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

EDITORIAL POLICY
OF THE
RSTS PROFESSIONAL

To provide an independent forum for the RSTS com-
munity. This will be accomplished by:

1. Regular special interest sections. Specifically, we are
planning, TECO, performance, systems programming (hacking),
RPG, RT11, user profiles, COBOL, FORTRAN and others as
requested (UNIX, PASCAL, etc.).

2. Articles of general interest. A regular (quarterly for
now), reliable (we'll be here!) journal free from censorship by
one group.

3. Product reviews and announcements. We will bring
you an analysis of hardware and software products for your
systems. The variety of these products, from many manu-
facturers, is both staggering and gratifying; at least the
RSTS users aren't the only ones who believe in RSTS.

4. An editorial position and exchange of views. If we
don't like something, we'll let you know — you do the same.

5. Through advertising, we'll provide a “marketplace”
for RSTS products, all of them.

6. ??? We're flexible, and we believe it is really our
(RSTS) journal, so let us know what you want and we'll try to
provide it.

Carl B. Marbach R.D. Mallery (2"

THE EDITORS

7

RSTS PROFESSIONAL*

Published quarterly by M. Sys-
tems, Inc., P.O. Box 361, Fort
Washington, PA 19034. Copy-
right 1979 by M. Systems, Inc.
No part of this publication
may be reproduced in any
form without written permis-
sion from the publisher.

Second Printing June 1980

Editors
R.D. Mallery
Carl B. Marbach

Editorial Assistant
Bonnie Staubersand

Contributors
Ronald Arenson, M.D.
Scott Banks
Peter Clark
Al Cini
Jack W. London, Ph.D.
Dave Mallery
Carl B. Marbach
Richard A. Marino
Martin Pring, D.Phil.
Kenneth Ross
Joel Schwartz, M.D.

Photographic Consultant
Arthur Rosenberg

Design & Typography
Grossman Graphics

Editorial information: We will consider
for publication all submitted manu-
scripts and photographs, and welcome
your articles, photographs and sugges-
tions. All material will be treated with
care, although we cannot be responsible
for loss or damage. (Any payment for
use of material will be made only upon
publication.)

*THIS PUBLICATION IS NEITHER PROMOTED, AUTHORIZED,
NOR IN ANY WAY AFFILIATED WITH DIGITAL EQUIPMENT CORP.

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

November/December 1979

page 3

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

Contents

STRUCTURED PROGRAMMING in BASIC-PLUS and BASIC-PLUS-2

Al Cini

Graduate of PDP-8's and Educomp Corporation where he helped develop their Multi-
User System. Software Specialist for Digital Equipment Corporation where he taught
and developed his structured programming techniques. Now doing all of this and more
at Nationwide Data Dialog.

RSTS/E — THE IN-HOUSE TIMESHARING ALTERNATIME

Kenneth Ross

President and founder of Ross Systems, Inc. who have developed major RSTS software
systems. Ken describes why RSTS can and does replace outside services, especially
utilizing the systems he describes.

2WRY TECO 2 oot e e e e e e e

Carl B. Marbach
Veteran of 14 years of interactive computing. Currently, editor of RSTS PROFESSIONAL.

2 HOW TECOD 2 o e e et e e e e e

Martin Pring, D.Phil.
Originally from Oxford University where he majored in limericks but managed a doc-
torate instead. Now Director of the University of Pennsylvania Medical School computer
facility which operates a PDP-10. Martin specializes in writing extravagant code - and
TECO suits his sensibilities. He is also never satisfied until he understands how things
work.

INTRODUCTION TO RSTS DIRECTORIEScc.iiiia...

Scott Banks

From microprossar software, hardware design to RSTS disk directories, Scott does it all!
An author past, present and future, he has appeared in BYTE. Some might call him a
HACK, but to us he's all PRO!

DEC TIMESHARING (1965) - .:..covvmmsnssisssssm s rensmswsnusss s

Peter Clark
Pete's article begins with a CDC 160-A, but he probably goes further back than than. A
real systems programmer for more than 10 years on PDP-8's, PDP-6's, and PDP-10's,
including a stint with DEC in Canada. Pete’s next article will be on how he built a MUMPS
interpreter for the PDP-10 (as a language).

A DATABASE SYSTEM FOR A HOSPITAL RADIOLOGY DEPARTMENT

Jack W. London, Ph.D. and Ronald Arenson, M.D.

A graduate (Ph.D.) chemical engineer, but a computer person forever, Jack began
programming PDP-8's to control Calcomp plotters hooked to a PDP-10. Now areal RSTS
pro, he and Ronald Arenson are pioneering the way for hospital systems the way they
should be.

DOUBLE PRECISION INTEGERS i ..

Dave Mallery
Veteran of 14 years of Data Processing. Currently, editor of RSTS PROFESSIONAL.

GANIES (25 ¢ crs 55 i s0s 02 m o 5 ie w0506 i 08 595 518 55 & 1 616006 i €168 s 16808 41 % 88000 a5 60 5 0 0

Joel Schwartz, M.D.

Did you ever wonder what psychiatrists did when they weren't treating patients?
They play adventure on an old ASR-33 teletype. A victor in adventure in four months,
Joel is looking for new challenges:; any ideas?

PROGRAMMING STANDARDSt

Scott Banks

SHOULD YOU CONSIDER USING MACRO-11 UNDER RSTS/E?

Richard A. Marino
One of the “Top Ten" in RSTS today, Rich and Data Processing Design, Inc., continue to
turn out valuable products and knowledge for the RSTS community. What he doesn't
know about RSTS isn't worth knowing.

In Next Issue...
February/March 1980

B Everything You
Always Wanted
To Know About
Modems and
Multiplexers

B How to Install
Your Own
Peripherals

B Add-on Disks
and Memory

B V7/.0Initial User
Reactions and
Reports

B Programming

Standards
Disk Directories
How TECO?

RPG Conversion
from a System/3

User Site Profile

More . ..

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

page 4

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

From the editors. ..

ME AND YOU
By Carl B. Marbach

OFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSiIONALRSTSPROFESSIONA

©

RSTS — A BEGINNING

By Dave Mallery

Great operating systems take on a life of their own in time. An
exceedingly complex and interconnected organism, it does the
unpredictable, organizes its own environment, and becomes
charged with a vitality all its own. The earliest sign of RSTS's
viability was its emergence as the prime commercial operating
system for the PDP11 despite DEC's insistence that it was only
for education. DEC soon found itself with a product they never
really planned, setting sales records that were never forecast.
A vocal and organized user community demanded and got re-
lease after release. The organism evolved new capacities by
demanding them from its creator. Originally, RSTS meant
BASIC+ and that was that. The BASIC interpreter was imbed-
ded in the monitor. Constant pressure from the growing user
community transmitted through DECUS finally caused the
splitting-off of run-time systems from the monitor.

As usual, the organism refused to dance to the designers
tune. Free at last from the constraints of BASIC, many expected
RSTS to shed the interpreter like an old skin. But again, the
user community resisted the change. Today's BASIC+ inter-
preter is better than ever. There is even serious talk of a BASIC+
for the VAX. BASIC+2 is a language on its own, but will never
replace BASIC+.

Run-time systems (HISEG'S), once the domain of the select
few, are now being written up and down the street. Since they
offer real security for proprietary software, they are encourag-
ing more entries into that market. They also provide the best
possible environment for user and system security. We look
forward to many exciting products in this area.

Full support of MACRO is a real milestone. Many of the best
system software packages have their own HISEGS and are at
least partially coded in MACRO, others use RT11 or RSXHISEGS.

Macro based cusps (PIP.SAV) are coming. The net perform-
ance enhancements provided by such maneuvers can greatly
extend the usable life of a system.

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPR!

dSLSHTYNOISSTI0HdSLSHTYNOISSIIOHdSLSHTVNOISSTI0HdSLSHTYNOISSII0HdSLSHTYNOISSII0HSLSHS!

ME an editor! My English Comp 101 professor just woke up in
a cold sweat. He doesn't know why, but we do: I'm an editor.
When [was publishing articles, THEY were the editors, now
it's ME.

['ve got to confess that it's more than [thought it was. It's a
heavy responsibility to YOU. Yes sir, I'm responsible and ac-
countable to YOU, the RSTS professionals of the world. ME and
YOU.

This journal will live or die by what YOU do with it. I'll help, but
it's really for YOU and by YOU. RSTS needs YOU. I need YOU,
to help ME.

I guess what | really want to say is that TOGETHER, WE can
help each other, all of US. WE need to know more. WE need to
know how. RSTS has more of US than WE know, and THEY need
more, better, faster, and newer information.

This is an invitation to ALL OF YOU to participate in the
exchange of information and knowledge in

The RSTS PROFESSIONAL.

S340

Write! Articles, letters to the editors, love letters (I love my
11/70), hate letters (I hate to wait 9 months for an RP06),
ideas, questions, or whatever. This exchange of information
will benefit all of US.

Like I said, ME and YOU!

HTYNOISSTA0HdSLSHTVNOISSTIOHSLSHTVYNOISSTI0HISLSHTYNOISSTA0HdS LSHTYNOIS

I remember solemn pronouncements that 5C was the ‘END
of RSTS. Each succeeding release has been accompanied by the
same dire tidings. Right now, for all to hear, I'd like to solemnly
announce the

‘BEGINNING OF RSTS'

as a mature, vibrant, viable operating system. We offer you the
RSTS PROFESSIONAL as a forum. A forum is a meeting place,
a place for politics and speeches, a place for intellegence gather-
ing and a place to do business; a place to learn and a place to
teach. A forum that is not crowded with people and full of noise
and activity is a useless empty space. The RSTS PROFESSIONAL
will be a forum only if you, the professionals, flock to it, use it,
trade in it, teach in it and learn from it.
STSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPRO

e

o

SIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRST,
TYNOISST40HdSLSHTYNOISSIJIOHdSLSHTYNOISSTA0HdSLSHTYNOISSTI0HdSLSHTVNOISSI

(%)

340HISLSHTYNOISSTIOHISLSHIYNOISSTI0UdSLSHTYN OISSTIOUISLSHTYNOISSII0HdS LSHTYN OISSTJ0HASLE

November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

RSTS USERS:

Talk's cheap-

we've got the ANSR.

3

*PDP and UNIBUS are registered trademarks
of Digital Equipment Corporation.

ANSR stands for Add-on Non-Stop Reliability. It’s just one of our answers for enhanc-
ing your minicomputer system. By simply adding on to your present system, the ANSR
technique lets you handle greater throughput with our software-compatible 9400 series.
To this, you can add benefits you just wouldn’t get with a larger CPU approach—like non-
stop operation and a large data base shared by multiple minis. With ANSR, any CPU,
Controller, or Drive can fail and your system keeps on running.

Look into our ANSR and you'll find more than 80 man-years of software experience—
with over 6,000 disk system installations—on and running. You can begin by sending
for our new “Solutions’ brochure, which shows examples (from small to large configu-
rations) of how to increase both your throughput and I/O capabilities. Whatever your
disk storage needs—from low-capacity systems using single-board controllers to large-
capacity, non-stop systems like ANSR—your price/performance leader is System Industries,

The Disk Store.
' System%ndustries

an equal opportunity employer

[0 Please send
My application is

copies of your “Solutions” brochure.

Name Position

Company

Address

City State Zip

()

Sunnyvale, California 94086 Surrey GU22 7QQ, England

(408) 732-1650, Telex: 346-459 Woking (048 62) 5077, Telex: 859124

[J Ineed immediate answers. Please have an applications specialist phone me:

SYSTEM INDUSTRIES (United States) SYSTEM INDUSTRIES (Europe)
525 Oakmead Parkway, P. O. Box 9025 System House, Guildford Road, Woking,

page 5

RSTS l

page 6

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

RSTS/E SOFTWARE ENGINEERING NCOTES

— Structured Methods for BASIC-PLUS (-2) Programmers

STRUCTURED PROGRAMMING in BASIC-PLUS and BASIC-PLUS-2

By Al Cini, Nationwide Data Dialog

Copyright 1979, Nationwide Data Dialog, Inc., all rights reserved.

THE INSPIRATION FOR STRUCTURED PROGRAMS

Or each dollar spent on software engineering in the Data
Processing industry today, more than 50 cents is channeled
into the repair or adaptation of existing systems, and much
less than the remaining half is spent on new development. If
even a fraction of this cost could be reclaimed by the use of
techniques which reduce the maintenance overhead of pro-
grams, the industry-wide savings would be enormous.

Theoretical papers in the late 60's by Dijkstra and others
began an analysis of the fundamental nature of programs and
programming, which eventually converged on “Structured
Programming.” This early treatment of elementary program
architecture began as a series of essentially descriptive inven-
tories of the minimum number of control structures needed to
express a program. Eventually, these descriptive analyses
were used to prescribe specific strategies for building “better”
software, and, as such a set of normative rules, structured pro-
gramming as it is practiced today gradually settled into the
framework of the industry.

Of course, rules in Data Processing are rarely accepted with-
out some fuss. Even now that most of the dust has settled,
many a coder will bristle at the mention of “structured pro-
grammming,” refusing even to read past the phrase in a book
or journal. But as so-called “structured” computer languages
(such as the widely adored PASCAL) are introduced and ac-
cepted, and as the discipline’s vocabulary becomes a part of the
industry's jargon, an eventual encounter with structured tech-
niques is becoming an inevitable event in a coder’s career.

THE MEANING OF STRUCTURE

The early work in structured programming centered around
a hypothetical system of “correctness proofs” which, it was
hoped, would provide a basis for providing programs correct
before they get to the computer. The goal of such systematic
“desk checking” wasn't so much the development of such a
proof procedure (the application of which could be quite
tedious for a large system) as it was the definition and under-
standing of “correct” software. Everyone observed that some
programs, apparently more organized than others, would
more readily lend themselves to this sort of process, so the
preliminary focus of study shifted to collecting commonalities
among organized programs. Largely by induction (though later
these ideas would be refined and verified more rigorously), the
following “earmarks” of organized programs emerged:

1. They appeared to comprise well-defined segments, which
were connected at discrete points and did not randomly
reference each other’s components.

2. They tended to avoid obscure language constructs.
They were relatively easy to read.

4. They avoided unnecessary extremes of involution, such as
excessive parenthetical nesting or multi-level IF-THEN.

L

Over time, these observations were refined and reduced to
a few definitions which are the basic principles of structured
programming:

A program is a representation of a procedure suitably de-

fined to allow its automatic execution by a computer. All

programs can be written using combinations of the following
elementary structures:
Sequence. In a program sequence, control is trans-
ferred serially from the first statement (the top) to
the last (the bottom).
Selection (IF-THEN-ELSE). In a program selection,
the alternative execution of two distinct and sepa-
rate program segments is based on the evaluation of
a logical condition.
Iteration (DO-WHILE). In a program iteration, a pro-
gram segment is executed repeatedly while an
associated logical condition is true.

As a new era of respect for “common sense” dawns in our
industry, we observe that English is a superset of FORTRAN
(and all other programming languages), and not vice versa.
It is therefore possible to render a plain English translation
of any program, and often it is handy to do so in advance of
actual programming. Structured programmers often discuss
something called “pseudo-code,” which is really an ad-hoc
form of “pigeon-English™ they use to express thoughts in a
systematic way. Free of the idiosyncracies of particular pro-
gramming languages, pseudo-code programs allow easy
exchange of ideas among programmers and, eventually, can
be converted to code in the target computer language by fol-
lowing a few rules. Pseudo-code representations of the ele-
mentary structures follow:

Sequence.
Statement 1
Statement 2
Statement n
Selection.

IF <condition— > THEN Note: when the ELSE in a
Statement A1 selection has no state-
Statement AZ ments, it is sometimes

Statement An parenthesized:
ELSE
Statement B1 IF < condition > THEN
Statement B2 Statements
Statement Bn (ELSE)
ENDIF. ENDIF.
Iteration.

DO WHILE <condition>
Statement 1
Statement 2
Statement n

END DO.

November/December 1979

page 7

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

Flowcharts, in a structured context, assume a somewhat
new meaning. Each of the elementary structures has only
one entry and exit, so flowcharts of the structures typically
sport one ‘in’ arrow (at the top) and one ‘out” arrow (at the
bottom). Combinations of the structures, therefore, are
easily partitioned into their basic components — a property
not often found in traditional flowcharts. This “plug-to-plug”
compatibility of program elements lead to the development
of an alternative flowcharting technique (called Nassi-
Schneiderman diagrams, or Chapin charts), offered as a
contrast to traditional flowcharts below:

Part 1.

Part 2.

Part n.

Part 1.

Part 2.

Part n.

FIGURE 1. Sequence.

“THEN" EISE"

>
E \ IF (cond) / T

"ELSE" “THEN"

FIGURE 2. Selection.

NEW BACKUP/RESTORE
PACKAGE FOR RSTS/E

Our DUMPER utility includes the following
features:

Faster than BACKUP

Will support Large Files

Can execute in Batch
Incremental Dump by Date
Handles multiple disks

Coded entirely in BASIC-PLUS

Please call or write for more info:

ENTERPRISE
TECHNOLOGY
CORPORATION

663 FIFTH AVENUE
NEW YORK, NEW YORK 10022 . (212)688-3511

page 8

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

code

S
iy
Y

>

DO WHILE (cond)

code

“DO"

>

While the three elementary program forms presented so far
have been proven to be sufficient, two additional structures

are introduced for convenience:

=

“DO"
code

“Do”
code

DO UNTIL (cond)

FIGURE 4. Iteration (DO-UNTIL).

FIGURE 3. Iteration (DO-WHILE).

CAS
1

CASE

CASE

CASE

FIGURE 5. Case Selection.

November/December 1979

page 9

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

Most people associate structured programming with no-
torious campaigns against the use of "GO TO" in programs
and, since none of the idealized “elementary structures”
includes a provision for unconditional branching, such an
association is, in theory, accurate. In practice, however,
people aren't programming in pseudo-code on Turing ma-
chines, and most commonly employed programming lan-
guages do not offer direct representations of the elementary
structures (this is very true in FORTRAN, for example, and to
a lesser extent in BASIC-PLUS). Current state of the art, alas,
demands an occasional unconditional branch.

As a practical matter, building structured programs in
“real” computer languages is accomplished through the
canny use of traditional language elements to synthesize the
elementary structures — now and then, these devices will
demand a GO TO.

BASIC-PLUS Language Restrictions.

BASIC-PLUS is an easy-to-use, highly interactive language
which offers rapid program development and fairly good
run-time economy (for an interpreter). A wealth of software
has been and is being written effectively in BASIC-PLUS every
day. (Its compiled counterpart, BASIC-PLUS 2, isn't as inter-
active a language, but it offers a broadened syntax and extra
features.) Nonetheless, there are two major restrictions
inherent in this language which complicate the construction
of structured software. Specifically, 1) BASIC-PLUS (and
PLUS-2) statements are identified by numeric rather than
symbolic labels (PASCAL offers both, numeric labels required
only for the unnecessary GO TO), and 2) the BASIC-PLUS
“IF-THEN" construct allows only one statement within the
scope of THEN and ELSE (except for the last one on the line),
and offers no “END IF" device. For the most part, these re-
strictions arise because, at the moment, neither BASIC-PLUS
nor PLUS-2 is an entirely “block structured” language.

Nonetheless, structured programs can be written in these
languages, but in doing so, we must be careful not to accept
BASIC-PLUS language constructs which appear structured
at their face value.

Structuring BASIC-PLUS Programs.

As we've already suggested, “block-structured” languages
are easier to structure than non-block-structured languages.
Simply stated, block-structured languages allow program-
mers to treat a series of program statements as though they
were a single statement, and these ‘blocks’ of software can
be substituted in-line for any single statement. PASCAL's 'IF’
device, like BASIC-PLUS, allows only one statement in its
‘THEN' and ‘ELSE’ clauses. Unlike BASIC-PLUS, however, a
series of statements can be substituted for a single state-
ment by bracketing them with ‘BEGIN' and'END’ statements.
Thus PASCAL allows

IF <condition> THEN

BEGIN
Statement;
Statement
END
ELSE
BEGIN
Statement;
Statement
END

BASIC-PLUS, of course, does not and, in fact, neither does
PLUS-2. Even though BASIC-PLUS-Z allows multiple program

statements in 'THEN/ELSE’ clauses, extreme care must be
taken when one of these statements is another IF. For ex-
ample, the following pseudo-code can't be represented
directly in BASIC-PLUS-2:

IF <condition—1> THEN
A=0
B=0
IF <condition—2> THEN
C=C+1
ELSE
cC=C-1
ENDIF.
Q=0 I <—This poses a problem
ELSE
A=1
ENDIF.

In this example, the statement 'Q=0" is handled in line with
its predecessors ‘A=0" and '‘B=0." Directly converting this
statement to BASIC-PLUS-Z places 'Q=0" in line with the
alternative statement for the innermost ‘IF’, viz. 'C=C - 1".
While this “dangling-ELSE" problem is easily side-stepped in
a trivial case such as this (we'll consider some alternative ap-
proaches in the next examples), more complex expressions
involving even shallowly nested ‘IF’ statements can be quite
misleading.

In an earlier definition of block-structuring, we listed two
criteria for truly block-structured languages: 1) That multi-
ple program statements can be treated as a single state-
ment, and 2) That such multiple-statement blocks can be
substituted in-line for single statements or other multi-
statement blocks. BASIC-PLUS and PLUS-2 meet the first
criterion, but not the second. It is possible for a group of pro-
gram statements in a BASIC-PLUS program to be treated as
a single statement by bracketing them with GOSUB/RETURN
statements, by including them in function definitions, or by
compiling them separately as subroutines (PLUS-Z only, of
course). An invocation of such a “block,” via GOSUB, CALL, or
function reference, is syntactically equivalent to a single
statement; thus, we meet criterion 1 for block-structuring.
Unfortunately, we can't take these groups and substitute
them in place for the statements which invoke them. As a
result, these ‘paragraphs’ (in this respect, they are similar
to COBOL paragraphs) will end up in geographically separate
places in the listing. Our BASIC-PLUS rendering of the pre-
vious pseudo-code problem, using out-of-line blocks, becomes:

1000 IF <condition—1> THEN &
GOSUB 2000 &

ELSE &
A=1 &

1 ENDIF.
2000 A=0 &
/ B=0 &
IF <condition—2> THEN &
c=C-1 &
ELSE &
c=C-1 &

I ENDIF.
2010 Q=0 &
RETURN &

With a little rearrangement, it is often possible to express
such constructs using in-line code. To further pursue the
previous example:

page 10
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

1000 IF NOT <condition—1> THEN &

A=1 &
ELSE &
A=0 &
B=0 &
IF <Condition—2 > THEN &
C=C+ &
ELSE &
L= &
! ENDIF.
1010 Q=0 UNLESS < CONDITION—1>

It is possible, using out-of-line code blocks, to convert selec-
tive pseudo-code directly to BASIC-PLUS and BASIC-PLUS-2.
Without a pre-processor of some kind (and one wonders
about pre-processors for interpreters), however, the result-
ing listing can be unwieldy. Rearrangements of program
logic, particularly involving the use of statement modifiers,
can preserve the structure of a program without sacrificing
its clarity. With practice, these “work-arounds” evolve as
matters of unique style which, nonetheless, are maintain-
able across programmers.

The sequence and iteration structures are easily repre-
sented in BASIC-PLUS and PLUS-2 syntax. Unless an error is
trapped (we'll discuss this later), any collection of executable
statements which do not contain branching instructions will
constitute a sequence, and any collection of statements
bracketed (or modified) by “WHILE" or “UNTIL" will con-
stitute a "DO-WHILE" loop. The “case selection” structure,
which is really a syntactically convenient nested “IF-THEN"
device, has as its most direct BASIC-PLUS analog the “ON
<scalar> GOSUB" statement, which executes one of a
vector of out-of-line coding blocks based on a given scalar
value. ("ON <scalar> GOTO", inasmuch as it fails to offer
automatic return to its following statement via “RETURN"
from its out-of-line blocks, is a less suitable substitute.)

Note, however, that although BASIC-PLUS provides an
“UNTIL/NEXT" loop control mechanism, it does not behave
at all like the “"DO-UNTIL" structure. Instead, both “WHILE"
and “UNTIL" loops in BASIC-PLUS evaluate their specified
conditions before the code within them is executed (this is
often called a “leading” decision). The DO-UNTIL structure,
on the other hand, tests its associated condition after its
code is executed (a “trailing” decision). Thus, in a DO-UNTIL,
the scope of the loop will always run at least once when the
loop is activated, but in BASIC-PLUS “UNTIL" and “WHILE"
loops the enclosed code may never run at all. Indeed,
“WHILE < condition>"and “UNTIL NOT <condition> " are
equivalent in BASIC-PLUS and BASIC-PLUS-Z.

“DO-UNTIL" can be expressed in BASIC-PLUS by using
combinations of “IF-THEN" and “GOTO", or by using “"UNTIL
(or WHILE)/NEXT." The following program segments will
search through DATA statements in a program until “*FILES”
is found.

1000 RESTORE
1010 READ X$ &
IF X$ <> "*FILES" THEN 1010

1000 RESTORE &
/ READ X$ &
/ UNTIL X$="*FILES" &
/ READ X$ &
/ NEXT &

November/December 1979

While the second implementation of this simple example
may seem unusual (for one thing, it uses two identical READ
statements), it is the most commonly applied and most
maintainable representation of “DO-UNTIL." Structured
programs in other languages lacking a generic “DO-UNTIL,”
most notably COBOL, will use such a “pump priming” READ
on an input data set before entering a loop to process subse-
quent records. While the statements themselves are syn-
tactically identical, reading the first record in a file is con-
sidered functionally different from reading each subsequent
record: hence, we are justified in including the (apparently)
same statement in two different places.

Alternatives for Formatting Programs.

It should be clear by now that a goal of structured disci-
pline is more easily maintainable software. We need to
understand, however, that a maintainable program is more
a matter of clarity than mere uniformity. Structured pro-
gramming will, of course, leave the selection and represen-
tation of algorithms up to the programmer, who may then
choose from among available language devices to represent
the required program structures. This process leaves con-
siderable room for the development of individual style as it
stresses the value of straightforward expression. At the
same time, a certain measure of uniformity in program
appearance will be a natural by-product.

Our examples so far have made use of indentation and
spacing to emphasize the scope of effect of various control
statements, and thus to improve the readability of the code.
Other devices in BASIC-PLUS and BASIC-PLUS-2 can be em-
ployed to further clarify a program’s intent.

User-Defined Functions.

We've already mentioned 1) that BASIC-PLUS state- -
ments are identified by numeric labels rather than alpha-
numeric names, and 2) “blocks” of BASIC-PLUS code must
be organized into separate packets and invoked out-of-line.
Using function definitions, a BASIC-PLUS programmer can
partially defuse these problems — particularly in this age of
“EXTEND" mode — and greatly improved code readability.
Major sections of BASIC-PLUS code can be collected into
appropriately named functions, and invoked by name rather
than number from the main body of the program. If these
functions carry no argument lists (for the most part, the
limited capabilities of these argument lists offer no advan-
tage in this context), they become mechanically interchange-
able with GOSUB/RETURN, but offer significant internal
documentation advantages.

The FOR Statement.

The BASIC-PLUS and PLUS-Z2 “FOR" statement hasn't
been mentioned so far because, strictly speaking, it isn't
needed to write structured programs. Just the same, FOR/
NEXT loops are procedurally similr to (but not identical with)
WHILE and UNTIL loops, and are an obvious choice in looping
situations with concommitant indexing.

Statement Modifiers.

Special forms of the selection and iteration elements
we've mentioned so far (and one we haven't mentioned:
“"UNLESS") can serve as modifiers of individual program

November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

statements, and, as we have seen, these constructions can
be used to circumvent compiler restrictions (particular with
IF-THEN) which can hamper the implementation of the ele-
mentary structures. When the modified statement is a
GOSUB, CALL, or function reference the scope of the state-
ment modifier can be very significant; though given minor
play in the manuals, statement modifiers are powerful
language tools.

Logical Variables and EXTEND Mode.

All programs consist of instruction and data components,
and while the chief realm of structured programming is “‘the
procedure division,” maintainable software is a function of
clarity of expression within the “data division” as well. BASIC-
PLUS and BASIC-PLUS-2 offer, at minimal cost (one word of
job space for every three characters in BASIC-PLUS), up to
30 characters in a variable or function name. Descriptive
(not necessarily lengthy) nomenclature for such items
(PURCHASE.ORDER.NOS or even PO.NOS$ rather than Q3$)
will go a long way toward simplifying a system'’s mainte-
nance. Also, the TRUE/FALSE value of a given condition can
be set or evaluated and stored in a named integer variable.
Using such a variable name in place of the condition’s less
clear arithmetic expression — particularly in the “main”
section of a program — can more clearly express the “func-
tional reason" for a loop or “IF.”

Program Comments.

Comments in program listings, flowcharts, block diagrams,
and all forms of ancillary program documentation suffer the
same phenomenon of program maintenance: documentation
lag. Documentation lag occurs when, for whatever reason, a
change to a program is made, but not to its accompanying
documentation. This can happen not only during the mainte-
nance of an old system, but during the development cycle of
new programs as well. Under these curcumstances, ancillary
documentation not only loses its descriptive value, but may
even do serious damage by misleading further development
or engineering efforts.

Of course, comments should not be “banned.” Certain com-
ments such as copyright notices, titles, modification histories,
variable and procedure name inventories, etc. are helpful and
justifiably included in locally adopted programming standards.
But comments can't necessarily be relied upon. The listings of
structured programs should, for the most part, offer their
“logic comments” intrinsically within the code itself. Changes
to the code will then necessarily change the “comments.”

Some Notes on Error Handling.

BASIC-PLUS and BASIC-PLUS-2 run-time errors are han-
dled by direct out-of-ine transfers into designated error
routines, which then typically "RESUME" into the main
stream of processing after the proper action is taken. It has
become common practice to trap all such errors to some
common location (usually line 19000), where processing
proceeds through a series of tests (sometimes called a “skip
chain”) to determine where the error actually happened, and
what should be done about it.

Obviously, this is a workable device employed perhaps in
every RSTS/E shop. Nonetheless, it poses some disadvan-
tages:

page 11

1) All program segments which can cause run-
time errors are bound together by the common
error routine. A change to the error code can,
therefore, inadvertently change the behavior of an
unrelated module. This restriction is minimized
when the common error routine is kept to a skeletal,
minimum size.

2) The error recovery process of a program seg-
ment will not be localized to that segment. This
may necessitate “page-flipping” of program list-
ings during maintenance.

3) The “'skip chain” in the common error routine is
likely to contain tests on the ERL pseudo-variable
(it almost certainly will if the same RSTS/E error is
possible at different points in the program). Editing
or resequencing line numbers in the body of the pro-
gram, without reflecting these changes in the error
area, will cause problems.

4) Connected through the common error routine,
individual program segments can't be fully isolated
from others for unit testing.

5) When converting BASIC-PLUS to BASIC-PLUS-2,
program modules which are coupled to a common
error routine — particularly if they are functions —
will branch out of their defined boundaries to
process their errors. This may defeat features in
future releases of the product, such as global opti-
mization, and such modules do not submit readily
to subroutine conversion for overlaying.

The alternative to a common error area — error trapping
within the segment causing the error — circumvents these
disadvantages. More importantly, the general notion of
functionally localized software, which is a central structured
programming theme — implies local error handling.

Remember, however, that “ON ERROR GO TO 19000" can-
not be labelled “bad" and forbidden, any more than “GO TO"
can. Standards for such specific language mechanisms are
adopted on an installation-dependent basis, in response to
the unique pressures of a particular project or programming
shop. Although the widely published “BASIC-PLUS Standards™
document used by DEC to write RSTS/E CUSPS mandates an
ON ERROR GO TO 19000, it nonetheless allows for the estab-
lishment of local error trapping where needed. In any event,
where common error handling is employed, the size of the
“common” area should be restricted, with the bulk of error
recovery occuring local to the segment which caused it.

Performance and Efficiency.

A wealth of essentially sloppy BASIC-PLUS and BASIC-PLUS-2
code is excused on the grounds of “performance” and “effi-
ciency.” Until now, we've made no mention of the relative
performance advantages of particular techniques, because
the performance characteristics of a program or system
is by far more a function of its basic design than of its indi-
vidual statements. Indeed, most of us will remember that,
when we've isolated performance problems in our systems,
really significant improvements in efficiency statistics de-
manded re-design rather than re-arrangement of programs.

Just the same, for your information, bench tests on the
use of GOSUB vs. function references (without arguments,
since the presence and size of an argument list detracts
greatly from the run-time performance of function invoca-
tion) suggest that executing functions takes about twice as

page 12
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

- FROM TRANS
PURCHASE FULL OWNERSHIP AND LEASE PLANS

PURCHASE PER MONTH

DESCRIPTION PRICE 12 MOS. 24 MOS. 36 MOS.
LA36 DECwriter Il........... $1,595 $ 152 $83 §$ 56
LA34 DECwriter IV 1,295 124 67 45
LA120 DECwriter 1ll, KSR 2.295 219 120 80
LA180 DECprinter I, RO 2,095 200 109 74
VT100 CRT DECscope 1,895 181 99 66
VT132 CRT DECscope 2,295 220 119 80
DT80-1 CRT Terminal 1,895 181 a9 66
TI745 Portable Terminal 1,595 152 83 56
TI765 Bubble Memory Term. . 2,795 267 145 98
TI810 RO Printer 1,895 181 99 66
TI820 KSR Printer 2,195 210 114 11
ADM3A CRT Terminal 875 84 46 AN
QUME Letter Quality KSR.. ... 3,195 306 166 112
QUME Letter Quality RO. 2,795 268 145 98
HAZELTINE 1410 CRT 895 86 47 32
HAZELTINE 1500 CRT 1,095 105 57 38
HAZELTIKE 1552 CRT 1,295 124 67 45
‘DataProducts 2230 7,900 755 410 277
DATAMATE Mini Floppy...... 1,750 167 91 61

FULL OWNERSHIP AFTER 12 OR 24 MONTHS
10% PURCHASE OPTION AFTER 36 MONTHS
ACCESSORIES AND PERIPHERAL EQUIPMENT
ACOQUSTIC COUPLERS ¢ MODEMS e THERMAL PAPER
RIBBONS e INTERFACE MODULES e FLOPPY DISK UNITS
PROMPT DELIiVERY e EFFICIENT SERVICE

2005 ROUTE 22, UNION, N.J. 07083
201-688-7800

TWX 710-985-5485

Z TRANSINET CORPORATION

long as executing statement subroutines. By the same
token, paired GOTOs in and out of code segments takes
about half the time as GOSUB/RETURN. In BASIC-PLUS-2,
corresponding language devices require about half the run-
time of their BASIC-PLUS counterparts, and the ratios
among their performance characteristics remain essentially
constant. Interestingly, the BASIC-PLUS-2 "CALL" is the
slowest of all these constructs. Remember, though, that in
comparing these implementation-dependent program con-
trol devices, we are dealing in milliseconds (an 11/70 takes
about 2.2 seconds to invoke a function 10000 times; 10000
iterations through the corresponding GOSUB construction
took about 1 second).

As we mentioned earlier, the size of variable names has no
effect on the size of a BASIC-PLUS-2 program, while, for each
name, BASIC-PLUS requires 1 word of job space for evary
three characters.

People are always debating the size/performance issues
of structured programming, but so far the results of com-

November/December 1979

parisons between structured and unstructured code has
offered nothing conclusive. In BASIC-PLUS and PLUS-Z,
structured programs will need fewer line numbers and line
number references than unstructured programs; perhaps
this economy can be used offhandedly to “pay” for larger
variable names and function definitions.

We can probably put this issue to rest by stating that per-
formance and efficiency are not goals of structured pro-
gramming, but the preliminary planning and attention that
structured programming demands tend to lead to software
which is designed rather than simply “tooled™ to be efficient.

Program Design.

An extensive discussion of the design techniques which
normally precede the development of structured programs,
often referred to as “top-down" design, is beyond the scope
of this article. Traditionally, however, structured systems
are designed from the “top” of an application (the part the
user sees) to the “bottom” (the part the programmer deals
with) by successively refining nested functional modules
until the lowest modules can be implemented in the target
programming language. This process of “stepwise refine-
ment” offers relatively quick availability of the “user
interface” portion of a system, and on-going consistency
checks which assure the ultimate correct interplay of all
software components.

Top-down system design is similar to outlining the con-
tents and component topics of a book before it is written.
The major topics are selected and ordered first, then each
major topic is “refined” in terms of its sub-topics, until the
lowest level topics are specified enough to allow orderly re-
search and composition. In the final analysis, sticking to the
original outline guarantees a cohesive final product.

In a multi-person project, the top-down design strategy
allows (to an extent) the parallel design and implementation
of individual components, and offers a framework for the
partitioning of “people tasks” which allows engineers to
work independently and yet converge on an integral product.

While the elementary structures we've itemized and dis-
cussed so far are sufficient for building structured programs,
any such resultant program is not guaranteed to be struc-
tured simply because it consists of organized pieces. The
preliminary act of functional analysis, however informal, is
essential to the development of structured software.

Examples.

These examples programs are based on simple specifica-
tions, selected to permit easy reading and to demonstrate
most of the constructions presented in this article. In a few
cases, particularly within example 2, limited design ap-
proaches were employed in order to “force” the occurrence
of specimen constructs.

LUG CHAIRPEOPLE

Send us your Lug List so we can
be sure everyone knows about the
RSTS PROFESSIONAL.

Box 361
Ft. Washington, PA 19034

November/December 1979 page 13
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

STRUCTURED PROGRAMMING SAMPLE 1

This sample program will read a line of characters from an cution continues through successive input records until and
input terminal, reverse it, and display the reversed string. Exe- end of file (CTRL/Z) is sensed.

10 EXTEND
20 YES%,TRUE$=-1% &
\ NO% , FALSE$=0%
1000 &
IMAIN PROGRAM TO READ, REVERSE, AND DISPLAY STRINGS OF CHARACTERS &
X$=FNREAD, STRING% &
\ UNTIL NO,MORE.STRINGS% &
\ REVERSES='"' &
\ REVERSE $=REVERSE$+MID (ASCII.STRINGS,I%,1%) &
FOR I%=LEN(ASCII.STRING$) TO 1% STEP -1% &
X PRINT 'REVERSED: ';REVERSES &
\ X$=FNREAD.STRING% &
\
!

NEXT &

END OF READ/REVERSE PROGRAM, &

&

&
2000 &
DEF FNREAD.STRING% &
\ ON ERROR GO TO 2098 &
\ PRINT "SERIES OF CHARACTERS, PLEASE"; &
\ INPUT LINE ASCII.STRINGS &
\ ASCII.STRING$=CVTSS (ASCII.STRINGS,4%) &
\ NO.MORE.STRINGS%=NO% &
\ GO TO 2899
2090 IF ERR=11% THEN &

NO.MORE.STRINGS$=YES% &

\ RESUME 2099

2099 ON ERROR GO TO 0 &
\FNEND &

IEND OF ASCII STRING INPUT FUNCTION &

&

&

32767 END &
&
&

page 14 November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

STRUCTURED PROGRAMMING SAMPLE 2

This sample program reads successive lines of characters from them. A sub-total report is printed after each line, and a grand
the keyboard, keeping count of the occurrence of vowels within total after end of file (CTRL/Z).

10 EXTEND

20 YES% ,TRUE%=-1% &
\ NO% ,FALSE%=0%
1000 &

!PROGRAM TO READ ASCII STRINGS FROM A TERMINAL, AND COUNT THE OCCURENCE &
!OF EACH VOWEL. SUB-TOTALS BY LINE AND GRAND TOTALS ARE PRINTED. &
A.TOT%, &
E.TOT%, &
I.TOT%, &
0.TOT%, &
U.TOT%=0% &
X%=FNREAD,.STRING% &
UNTIL NO.MORE.STRINGS% &

A,.SUBTOTS%, &

E.SUBTOT%, &

I.SUBTOT%, &

0.SUBTOT%, &

U.SUBTOT%=0% &

X%=FNEXTRACT,FIRST.CHARACTER% &

UNTIL NO.MORE.CHARACTERS% &

INDEX%$=INSTR(1%,"AEIOU" ,CHARS) &
ON INDEX% GOSUB &
1196, ! "A"™ FOUND
12006, ! "E" FOUND
1306, ! "I" FOUND
!
!

e

LA

1400, "0" FOUND

1500 "U" FOUND

UNLESS INDEX%$=0% &
X%=FNEXTRACT.FIRST.CHARACTER% &

R R R

NEXT &
X%=FNDISPLAY .DETAIL,.TOTALS% &
X%=FNREAD.STRING% &
NEXT &
X%=FNDISPLAY.GRAND.TOTALS% &
\GO TO 32767 &
lEND OF VOWEL COUNTING PROGRAM. &
I &
! NOTE: WE BRANCH TO 32767 IN THIS SAMPLE TO GET AROUND THE &
GOSUB-TYPE SUBROUTINES AT LINES 1106-1500, IN SAMPLE 1, WHICH &
USED ONLY FUNCTION-TYPE SUBROUTINES, EXECUTION NATURALLY &
SKIPPED AROUND THE SUBROUTINE CODE, &

P

== g 0=

&
&
1160 ! INCREMENT "A" COUNTERS &
A.TOT$ =A.TOT% +1% &
\ A.SUBTOT%=A.SUBTOT$+1% &
\ RETURN &
&
&
12¢0 ! INCREMENT "E" COUNTERS &
E.TOT$ =E.TOT% +1% &
\ E.SUBTOT%=E.SUBTOT%+1% &
\ RETURN &

November/December 1979 page 15
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

1300 ! INCREMENT "I" COUNTERS &

I.TOT% =I,TOT% +1% &
\ I.SUBTOT%=I.SUBTOT%+1% &
\ RETURN &
&
&

1400 ! INCREMENT "O" COUNTERS &
0.TOT% =0.TOT% +1% &

\ 0.SUBTOT%=0,SUBTOT%+1% &
\ RETURN &

&

&
1508 ! INCREMENT "U" COUNTERS &

U.TOT$ =U.TOT% +1% &

N U.SUBTOT%=U.SUBTOT%+1% &
\ RETURN &

&

&

2000 &

DEF FNREAD.STRING% &

\ ON ERROR GO TO 2090 &
N PRINT "SERIES OF CHARACTERS, PLEASE"; &
N INPUT LINE ASCII,.STRINGS &
N ASCII.STRINGS=CVTS$S (ASCII.STRINGS,4%) &
L NO.MORE,STRINGS%=N0O% &
\ GO TO 2899
2090 IF ERR=11% THEN &
NO,.MORE, STRINGS%=YES% &

\ RESUME 2099
2099 ON ERROR GO TO 0 &
\FNEND &

IEND OF ASCII STRING INPUT FUNCTION &

&

&

2100 &

DEF FNEXTRACT.FIRST.CHARACTER% &

\ NO.MORE.CHARACTERS%=(LEN (ASCII.STRINGS)=0%) &
LY IF NOT (NO.MORE,CHARACTERS%) THEN &

CHARS=LEFT(ASCII.STRINGS,1%) &

X ASCII.STRINGS=RIGHT(ASCII.STRINGS,2%) &
! (ELSE) &

! ENDIF.

2190 &

FNEND &

&

&

2200 &

DEF FNDISPLAY.DETAIL,TOTALS% &

\ PRINT "FOR THIS STATEMENT:" &

\ PRINT " A COUNT =";A,SUBTOT% &

\ PRINT " E COUNT =";E.SUBTOT% &

X PRINT " I COUNT =";I.SUBTOT% &

\ PRINT " O COUNT =";0.SUBTOT% &

B PRINT " U COUNT =";U.SUBTOT% &

\FNEND &

page 16

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

2300 &
DEF FNDISPLAY.GRAND.TOTALSS &
\ PRINT "GRAND TOTALS:" &
b PRINT " A TOTAL =";A,.TOT% &
\ PRINT " E TOTAL =";E.TOT% &
\ PRINT " I TOTAL =";I.TOT% &
N PRINT " O TOTAL =";0.TOT% &
\ PRINT " U TOTAL =";U.TOT% &
\FNEND &

&

&

32767
&
&

END &

STRUCTURED PROGRAMMING SAMPLE 3

This example is a RSTS/E systemn program designed to provide
SYSTAT-like reporting features along with UTILTY-like job-
killing capabilities. A user of this “KILJOB" program can display
and Kkill user jobs running under specific accounts (project and
programmer numbers can be provided as ranges, or as specific
values). This example includes generalized monitor look-up
routines which are self-documenting and may be removed for
use in some other context.

(Some of the functions designed in this program accept and
return arguments and results in the traditional function-

10 1EXTEND!

20 PNAMES$="KILJOB" &
N VERSNS$="VO1" &

\ EDITIONS ="A"

[
=
[

PRINT IF CCPOS (@) &
EXEC% = FNMONITOR,.TABLES% &
PRINT PNAMES$+"

PRINT " SYSTEM ID = ";
PRINT "TODAY = ";DATES (0%);"
JOB.NO% FNJOB.NO% &

P.PN% FNP.PN% (JOB.NO%) &
PROJ%
PROG%
KB%
PRINT "JOB";JOB.NO%;"

A

P.PN% AND 255% &

PRINT &

- e P

EXEC%=FNGET.OPTION% &
\ UNTIL OPTIONS='E' &

\ IF OPTIONS='H' THEN &

definition sense. Remember that, when these specific features
are used, function definitions lose their interchangeability with
GOSUB/RETURN. As we've said, under normal circumstances
the performance advantages of GOSUB are negligible. In a
compute-bound routine, however, where out-of-line coding
segments are invoked within high-traffic loops, significant per-
formance advantages [the term ‘significant’ is very relative]
can be gained by using GOSUB/RETURN in lieu of function defi-
nitions. Of course, executing the code in-line, if possible, offers
still greater run-time economy.)

"+VERSNS$+"/"+EDITIONS+" "; &
INSTALLATION,NAMES=CVTSS (RIGHT (SYS(CHRS(6%) +CHRS (9%)) ,3%) ,4%) &
INSTALLATION.NAMES &
NOW =

";TIMES (0%); &

SWAPS (P.PN%) AND 255% &
FNCONSOLE.KB% (JOB.NO%) &

KB";NUMLS$ (KB%);": "; &
"["+NUML$ (PROJ%) +", "+NUM1$ (PROG%) +"] " &

DERIVE AND PRINT OUR FULL IDENTIFICATION., &

EXEC%=FNHELP.OPTION% &

ELSE &
IF OPTIONS='L'

THEN &

EXEC%=FNLIST.OPTION% &

ELSE &

IF OPTIONS='K'

ELSE &

THEN &
EXEC%=FNKILL,OPTION% &

PRINT 'SORRY, BUT ';ENTERED.OPTIONS;

' IS INVALID.' &
PRINT 'TYPE "HELP"
PRINT &

FOR HELP.' &

&

November/December 1979 page 17
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

10190 EXEC%=FNGET.OPTION% &
\ NEXT &
\ PRINT &
\ PRINT 'END OF JOB' &
\ PRINT &
i GO TO 32767 &
&
&

2000 &

FNHELP.OPTION% &

PRINT &

PRINT 'OPTIONS ARE:' &

PRINT TAB(4%);'L[IST]';TAB(20%);'LIST THE JOB TABLE' &
PRINT TAB(4%);'K[ILL]';TAB(20%);'KILL JOB(S)' &

PRINT TAB(4%);'E[XIT]';TAB(20%); 'EXIT FROM ';PNAMES &
PRINT TAB(4%); 'H[ELP]';TAB(20%) ; 'PRINT THIS OPTIONS LIST' &
PRINT &

FNEND &

ND FNHELP,OPTION% &

lw}
[e3]
I

*

- s

DEF#* FNLIST.OPTION% &
\ EXEC%$=FNGET.P.PN.SPECS% &
PRINT &
PRINT INSTALLATION.NAMES;' JOBMAX:';MAX.JOB%;' KBMAX:';MAX.KB% &
PRINT &
PRINT 'JOB(S) SELECTED:' &
PRINT ' PROJ:';LOW.PROJ%;'-';HI.PROJ% &
PRINT ' PROG:';LOW.PROG%;'-"';HI.PROG% &
PRINT &
JOB.COUNT%=0% &
FOR JOB%=1% TO MAX.JOB% &

IF FNLOGGED.IN% (JOB%)=-1% THEN &

IF FNQUALIFY% (FNP.PN% (JOB%))=-1% THEN &
PRINT FNJOB.LINES (JOB%) &

VPP

X JOB.COUNT$=JOB.COUNT%+1%
2015 NEXT JOB% &
\ PRINT &
\ PRINT 'TOTAL JOBS FOUND:'; JOB.COUNT% &
X, PRINT &
\ FNEND &
IEND FNLIST.OPTION% &
&
&

DEF* FNKILL.OPTION% &
\ OPEN 'KB:' AS FILE 1% &
\ EXEC$=FNGET.P.PN.SPECS% &
\ PRINT 'SELECTIVE? (Y OR N) <Y>'; &
\ INPUT LINE 1%, RESPS$ &
\ SEL.FLAG%=-1% &
\ SEL.FLAG%=0% &
IF ASCII(CVTSS(RESPS$,-1%))=ASCII('N') &
\ FOR JOB%=1% TO MAX.JOB% &
\ IF FNLOGGED.IN% (JOB%)=-1% THEN &
IF FNQUALIFY% (FNP.PN% (JOB%))=-1% THEN &
EXEC%=FNKILL.JOB$% (JOB%)

page 18 November/December 1979
RSTSPROFESSIONALRSTSPROFESS!0NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

2025 NEXT JOB% &

\ FNEND &
1END FNKILL.OPTION% &
&
&
3000 &
DEF* FNJOB.LINES (JOB%) &
\ X.30008S = '"' &
LY X.3000$ = 'JOB '+NUM1S(JOB%) &
X IF FNLOGGED.IN% (JOB%)=0% THEN &
X.3000S = X.3000S5+CHRS (9%) +' ***% NOT LOGGED IN *kkk1 g
ELSE &
X.30005 = X.3000S$+CHRS(9%) +"UNDER ["+ &
NUM1 S (SWAP% (FNP.PN% (JOB%)) AND 255%)+', '+ &
NUM1 S (FNP,.PN% (JOB%) AND 255%)+']' &
\ X.30003 = X.3000S$+CHRS (9%) +"RUNNING "+FNJOB.NAMES (JOB%) &
\ IF FNATTACHED% (JOB%) = -1% THEN &
X.3000$ = X.3000$+CHRS(9%) +"AT
KB"+NUM1 $ (FNCONSOLE.KB% (JOB%)) &
+":" &

ELSE &
X.30003 = X.3000S$+CHRS (9%) +"DETACHED" &

3010 FNJOB,LINES$S=X,.3000S$ &

\ FNEND &

IEND FNJOB.LINES &
&

&

4000 &

DEF* FNGET.OPTION% &
N OPEN 'KB:' AS FILE 1% &
N PRINT 1%, 'OPTION:'; &
\ INPUT LINE 1%, ENTERED.OPTIONS &
N ENTERED.OPTION$=CVT$$ (ENTERED,OPTIONS,4%) &
N OPTIONS$=LEFT (CVTS$$ (ENTERED,OPTIONS,-1%) ,1%) &
N OPTIONS='H' &
IF OPTIONS$='' &
\ FNEND &
IEND FNGET,OPTION% &
&

4100 &
DEF* FNGET.P.PN.SPECS% &

\ OPEN 'KB:' AS FILE 1% &

\ PRINT 1%, " PROJ: <1-255> "; &

\ INPUT LINE 1%, PROJ.RANGES &

\ EXEC%$=FNPARSE% (PROJ.RANGES) &

o LOW.PROJ%=LOW.VAL% &

\ HI.PROJ%=HI.VAL% &

\ PRINT 1%," PROG: <1-255> "; &

N INPUT LINE 1%, PROG.RANGES &

\ EXEC%=FNPARSE% (PROG.RANGES) &

\ LOW.PROG%=LOW.VAL% &

N HI.PROG%=HI.VAL% &

\ PRINT &

\ PRINT "PROJ:";LOW.PROJ%;'-';HI.PROJ% &
X PRINT "PROG:";LOW.PROG%;'-';HI.PROG% &
\ PRINT &

b FNEND &

1

=
v}

FNGET.P.PN,SPECS% &

R 2 I

November/December 1979 page 19
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

5000 &
DEF* FNPARSE% (RANGES) &

ON ERROR GO TO 5020 &

RANGE$=CVTS$S (RANGES,-1%) &

RANGES$='1-255" &

IF LEN(RANGES)=0% &
D.5000%=INSTR(1%,RANGES,'-"') &

IF D.5000%=0% THEN &
D.5000%=LEN(RANGES) +1% &
RANGE$=RANGES$+'-"+RANGES

a5 RANGES$="'1"+RANGES &

IF D.5000%=1% &
RANGES=RANGES$+'255"' &

IF D.5000%=LEN(RANGES) &
LOW.VAL$=VAL (LEFT (RANGES,D.5000%-1%)) &
HI.VAL% =VAL(RIGHT(RANGES,D.5000%+1%))

a7 IF LOW.VAL%>HI.VAL% THEN &

LOW.VAL%=VAL('X"') &

! IF LOWER IS GREATER THAN HIGHER, THEN FORCE AN ERROR. &

w -~ s wns s L

5010 FNEND
5020 LOW.VAL%=1% &

N\ HI.VAL%=255% &
b PRINT 1%, "ILLEGAL RANGE: 1-255 ASSUMED." &
\ RESUME 5010 &
IEND FNPARSE% &
&
&
5100 &
DEF* FNKILL.JOB% (JOB%) &
\ IF SEL.FLAG%=0% THEN &
EXEC%=FNCLEAR,.JOB% (JOB%) &
ELSE &
PRINT 1%, 'KILL ';FNJOB,LINES(JOB%);'? <KN>'; &
X INPUT LINE 1%, RESPS &
\ IF ASCII(CVTSS(RESPS,-1%))=ASCII('Y') THEN &

EXEC%=FNCLEAR.JOB% (JOB%)
5110 FNEND &
{END FNKILL.JOB% &

&
&
5200 &
DEF* FNQUALIFYS% (P.PN%) &
\ IF (SWAP%(P.PN%) AND 255%) >=LOW.PROJ% &
AND (SWAP%(P.PN%) AND 255%) <=HI.PROJ% &
AND (P.PN% AND 255%) >=LOW.PROG% &
AND (P.PN% AND 255%)<=HI.PROG% THEN &
FNQUALIFY%=-1% &
ELSE &
FNQUALIFY%$=0% &
&
&

5210 FNEND &

LEND FNQUALIFY% &
&

&

page 20 November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

5300 &
DEE#* FNCLEAR,JOB% (JOB%) &
X IF JOB%=J0B.NO% THEN &
ELSE & PRINT CHRS$(7%)+ " HEY, I'M JOB";JOB%;"—- I CAN'T DO THAT!" &

FNCLEAR.JOB%=ASCII (SYS(CHR$(6%) +CHRS (8%) +CHRS (JOB%) &
+STRINGS(24%,0%) +CHRS (255%))) &

\ PRINT ' -- JOB';JOB%;'KILLED.' &
5310 FNEND &
IEND FNCLEAR.JOB% &
&
&
28000 &
DEF* FNMONITOR.TABLES% &
\ DIM T.3%(30%) &
\ CHANGE SYS(CHRS(6%)+CHRS$(-3%)) TO T.3% &
\ MAX.KB% = T.3%(3%) &
X MAX.JOB%$= T.3%(4%) &
\ DEVCNT% = T.3%(5%)+SWAP%(T.3%(6%)) &
\ DEVPTR% = T.3%(7%)+SWAP%(T.3%(8%)) &
\ MEMLST% = T.3%(9%)+SWAP% (T.3%(10%)) &
\ JOBTBL% = T.3%(11%)+SWAP%(T.3%(12%)) &
\ JBSTAT% = T.3%(13%)+SWAP%(T.3%(14%)) &
\ JBWAIT% = T.3%(15%)+SWAP%(T.3%(16%)) &
\ UNTCLU% = T.3%(17%)+SWAP% (T.3%(18%)) &
\ UNTCNT% = T.3%(19%)+SWAP% (T.3%(20%)) &
5 SATCTL% = T.3%(21%)+SWAP%(T.3%(22%)) &
\ JSBTBL% = T.3%(23%)+SWAP%(T.3%(24%)) &
\ SATCTM% = T.3%(25%) +SWAP%(T.3%(26%)) &
N CHANGE SYS(CHRS(6%)+CHRS$(-12%)) TO T.3% &
N FREES% = T.3%(3%)+SWAP%(T.3%(4%)) &
\ DEVNAM% = T.3%(5%)+SWAP%(T.3%(6%)) &
\ CSRTBL% = T.3%(7%)+SWAP%(T.3%(8%)) &
Y DEVOKB% = T.3%(9%) +SWAP% (T.3%(10%)) &
N TTYHCTS = T.3%(11%)+SWAP%(T.3%(12%)) &
\ JOBCNT% = T.3%(13%)+SWAP%(T.3%(14%)) &
\ RTSLST% = T.3%(15%)+SWAP%(T.3%(16%)) &
\ ERLCTL% = T.3%(17%)+SWAP%(T.3%(18%)) &
\ SNDLST% = T.3%(19%) +SWAP%(T.3%(20%)) &
\ LOGNAMS = T.3%(21%)+SWAP%(T.3%(22%)) &
\ DEVSYN% = T.3%(23%)+SWAP%(T.3%(24%)) &
\ MEMSIZ$ = T.3%(25%)+SWAP% (T.3%(26%)) &
\ CCLLST$ = T.3%(27%)+SWAP%(T.3%(28%)) &
\ FNEND &
IEND FNMONITOR.TABLES% &
&
\DEF* FNJOB.NO$% = (PEEK(518%) AND 255%)/2% &
&
&
\DEF* FNJDB% (JOB.NO%) = PEEK(JOBTBL%+2%*JOB.NO%) &
&
&
\DEF* FNJDB2% (JOB.NO%)= PEEK(FNJDB% (JOB.NO%)+8%) &
&
&
\DEF* FNP.PN% (JOB.NO%)= PEEK(FNJDB2% (JOB.NO%) +24%) &
&

November/December 1979 page 21
RSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

\DEF* FNJOB,NAMES (JOB.NO%) = &
RADS (PEEK (FNJDB2% (JOB.NO%) +12%)) &
+ RADS (PEEK (FNJDB2% (JOB,NO%) +14%)) &

\DEF* FNLOGGED,IN% (JOB.NO%) = &
[PEEK (JOBTBL$+2%*JOB.NO%) <> @%] &

\DEF* FNIOB% (JOB,NO%) = PEEK(FNJDB% (JOB.NO%)) &

\DEF* FNCONSOLE.KB% (JOB,NO%) = &
(SWAP% (PEEK (PEEK (FNIOB% (JOB.NO%)) +2%)) AND 255%) &

\DEF* FNATTACHED% (JOB.NO%) = &

[((PEEK (PEEK (PEEK (FNJDB% (JOB.NO%))) +2%) AND 255%) &
= JOB.NO%*2% &

AND &
(PEEK (PEEK (PEEK (FNJDB% (JOB.NO%))) +6%) AND 8192%)=8192%) &
AND &
FNLOGGED,.IN% (JOB.NO%) <>0%] &
&

*** END OF MONITOR INFORMATION RETRIEVAL FUNCTIONS &
32767 END &

page 22 November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

NATIONWIDE DATA DIALOG, INC.

70 JAMES WAY
SOUTHAMPTON, PA 18966
215 322-2050

LEADERS IN INTERACTIVE SYSTEMS

B A complete range of timesharing facilities
serving New York to Baltimore
most standard packages; raw time

B A RSTS/E Learning Center
user training
system management
advanced programmer
structured engineering

B RSTS/E Consulting Services
contract software engineering
system performance tuning
systems analysis & design
contract training

m Software Tools
CUSTOM system security packages

MACRO based directory

— 7 times faster than PIP/L
— all DIR features

— file/UFD position analysis
— available NOW

RMS11K from BASIC +

— access to most RMS11K features for sequential,
relative and indexed files

— RMS files stay open across chain

— will use optional shared library feature

— available January 1980

*RSTS is a trademark of Digital Equipment Corporation.

November/December 1979

page 23

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

RSTS/E — THE IN-HOUSE TIMESHARING ALTERNATIVE

By Kenneth Ross, President, Ross Systems, Inc.

SUMMARY

The last 5 years have seen the introduction of high-speed, low
cost mini-computers with interactive timesharing capabilities.
With the recent advent of user oriented, problem solving lan-
guages such as financial modeling and interactive data base
management that run on these computers and the availability
of public, nationwide networks, it has now become feasible to
set up an in-house timesharing facility. A PDP-11 with the
RSTS/E operating system presents one of the best alternatives
for establishing such a facility.

THE MINI-COMPUTER MARKETPLACE

Over the years, the market for business uses of mini-computers
can be visualized as divided into three broad segments. In
summary, these are:

1. General purpose business machines that represent the
main data processing applications of a company such as
accounting systems, inventory control, etc.

2. Machines dedicated to one or a few specialized applica-
tions in a company which has additional computers for
other data-processing tasks.

3. Machines installed to provide general, interactive data
processing to end users.

The next few years will see a dramatic increase in the pur-
chase of computers for the last of these.

TIMESHARING DEFINITION

Timesharing can be thought of as the use of the computer to
provide general, interactive computing services directly to end
users. It differs from traditional computing in that the users of
the service develop many of the applications themselves rather
than relying on computer professionals to do it for them. Addi-
tionally, the applications that are done on timesharing are likely
to be supplementary to the company’s core systems require-
ments and oriented more towards decision-making rather than
data manipulation. Financial models, budgets, financial consoli-
dations, data retrieval systems, graphics and other data analysis
systems are examples of timesharing systems.

The users of timesharing benefit from these services by
being able to develop, operate and change systems at their own
discretion.

The company's data processing organization benefits by
being freed from the inherent problems of dealing with numer-
ous, smaller systems so that they can concentrate upon the
major operational systems that are critical to the company’s
business.

The market for general purpose timesharing up to now has
been totally dominated by the major, nationwide companies
with large networks and offices throughout theU.S.(and over-

seas), General Electric, Service Bureau Corp., and TYMSHARE
are just some of these major companies.

These timesharing firms have traditionally been effective in
providing services to firms that already have large EDP organi-
zations because they have offered 4 major components to their
services that end users need:

1. Problem oriented languages that allow users to set-up,
operate and change aplications directly without help from
EDP people.

2. A great deal of support via local ‘tech reps’.
3. National (international) networks.

4. Interactive computers that are easier to use than their
in-house computers and could be used for simple BASIC
programming.

A company that intends to provide these services internally
must provide .these four elements to its users if it hopes to
compete with outside firms.

PROBLEM ORIENTED LANGUAGES

It is important that general timesharing users not feel the
frustration that they sometimes associate with in-house EDP
projects. In larger companies, even the smallest projects can
take months or even years to complete. In-house EDP staffs are
not oriented toward the smaller, decision support systems that
are normally done on timesharing services. Traditional proce-
dural computer languages such as FORTRAN and COBOL are
programmer oriented. Timesharing firms have developed
special problem oriented languages which users can use directly
to develop, change and operate certain types of systems. Over
the years, the two biggest applications in this marketplace
have been:

1. Financial Modeling and Reporting
2. Interactive Data-Base Management

A company that wants a successful in-house timesharing
facility must typically offer both of these products to its users.

FINANCIAL MODELING AND REPORTING

The first widely used problem oriented languages on general
timesharing systems were used for financial modeling and re-
porting. These languages are used to develop and operate a
wide range of “matrix” oriented systems such as models, bud-
gets, consolidations and cash flow forecasts. They are used by
financial personnel — analysts, controllers, and accounts, to
develop forecasting systems and reporting systems. Since
there is a heavy amount of user involvement in the manipulation
of data and reports, financial modeling languages tend to be
used as a supplement to general ledger systems. In fact, a
major source of input data is a summary taken from general
ledgers.

page 24 November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESS!ONALRSTSPROFESSIONALRSTSPROFESSIUNALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESS]ON

Are you sure this is a DEC computer?

November/December 1979

page 25

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

In a typical application, the user defines the rows of the
report, its columns, the report titles and its calculation logic.
Logic, for example, might involve summing a series of rows to
get a subtotal or multiplying a row by a constant to get another
row. While simple in concept, modeling languages have grown
in capability to handle such features as large-scale financial
data-bases, simultaneous equations (used in modeling), back-
wards iteration and complex logical calculations. In our experi-
ence with MAPS, our proprietary financial modeling language,
we have used it to construct financial consolidation and report-
ing systems for fortune 500 companies as well as simple cash
flow forecasting models for small electronics manufacturing
firms. The people that use MAPS include accounting clerks,
controllers, programmer-analysts and vice-presidents.

Financial modeling languages, in order to be effective in a
timesharing environment, should be easy-to-use yet should con-
tain enough features so that “real world” problems can be
solved by them. Some of these features should be —flexible logic
and calculations, powerful report formatting capabilities, exten-
sive data storage and retreival methods and large capacity.

INTERACTIVE DATA-BASE MANAGEMENT

Interactive data-base management systems are used to
manage records of data — data maintenance, sorting, report-
ing and “ad hoc™ inquires. While financial modeling languages
deal with matrices, data-base management systems deal with
records or transactions. The timesharing, interactive require-
ments for data-base systems differ from traditional data base
systems in 2 important aspects.

1. A person with no programming background should be able
to use an interactive data-base management system from
start to finish to set-up and operate an application — all
without writing a computer program. This includes defin-
ing the data-base, adding, changing and deleting informa-
tion from the database, changing the data-base definition,
performing ad hoc inquiries and developing complex
reports.

2. The need for sophisticated data structures (rings, net-
works, etc.) is less, yet the need for extensive, easy to use
reporting features is greater.

Our firm originally attempted to use RMS-11 and DATATRIEVE
in this environment. We were unsuccessful because of the
limited reporting facilities that were available in DATATRIEVE
and the difficulty of programming in BP [I/RMS-11. We then
developed, from the ground up, a completely interactive data-
base management system that met all of our objectives. ORBIT
has now been in use for a number of months as a general pur-
pose data-base management system.

In order to be effective in a timesharing environment, an
interactive data-base management system should have fea-
tures such as easy, question and answer format for creating
data files, automatic editing of data, good inquery facilities and
a way to easily generate more complex reports. Today, data
base management systems are the single largest used products
on timesharing systems.

USER SUPPORT

The second requirement for effective in-house timesharing
is good user support. This is the one that the major time-

sharing firms have been most effective at, and the one that is
the most underestimated in terms of effort, for companies that
are bringing timesharing in-house. Many users need a great
deal of “hand holding”. There is a wide ranging of capabilities of
users in any firm and in order to keep all users satisfied, some of
them will require much more support than others, The potential
installer of an in-house timesharing service must be prepared to
hire a staff of people that can handle the problems, requests
and even new system development that is part of timesharing.

NETWORKS

Traditionally, the large timesharing firms were the only ones
to offer easy network access, both domestic and overseas. Over
the last few years, this is no longer the case and the availability
of at least 2 public, packet switched networks makes it easy to
hook a RSTS system to a network for only a few hundred dollars.

EASY TO USE COMPUTERS

The final item that the major timesharing firms offered their
cutomers was a computer that was easy to use relative to the
firms in-house computer. Easy to use refers both to the operat-
ing system features (directories, editor, login/logout etc.) as
well as the programming facilities such as BASIC and FORTRAN.
The advent of RSTS/E and machines with the capability of an
11/70 offer facilities even easier to use than timesharing firms
offer. Combined with the BASIC PLUS interpreter, RSTS offers
the best interactive timesharing environment available today.

CONCLUSION

Today the RSTS systems offer the best facility for in-house
timesharing. Of the 4 basic requirements, problem oriented
languages for financial modeling and interactive data base
management are now available from vendors like Ross Systems,
networks are readily available from either Tymnet or Telenet
and DEC supplies the easy-to-use computer via the RSTS oper-
ating system. The computer must supply only the user support.

BIOGRAPHY

Ross Systems is a management consulting and computer
timesharing firm located in Palo Alto, California. We operate
3 PDP-11/70 RSTS systems and offer for sale proprietary soft-
ware including MAPS, a financial modeling and reporting lan-
guage and ORBIT, an interactive data base management
system.

page 26

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

? Why TECO ?

By Carl B. Marbach

The main reason to use TECO and the major premise of this
article is —

I BECAUSE IT IS THE EASIEST EDITOR TO USE !

The fact that it is the fastest, most versatile, and most
powerful editor is secondary to the main premise. It is always
interesting to note that editors are almost always used by
experienced programmers and users, and we are afraidit’'s too
complicated for these talented people! For any of you who have
stayed away from TECO because it was too complicated, hard,
or secretive (it is not a DEC supported product, just everyone
at DEC uses it), read on and I'll show you the easiest editor
around.

The first thing one wants to do to edit is invoke the editor
and tell it what you want to edit. Thus,

TECO FOO.BAS

starts TECO, identifies that you want to edit FOO.BAS and as a
bonus, create FOO.BAK in case you destroy or modify some-
thing you didn't want to. Clearly, there is no shorter, clearer or
easier way to do this.

TECO now responds with an * indicating its readiness to
accept commands. A subset of TECO commands necessary to
edit files are listed here.

Vv View the line you are currently
on.

L Move to the next line. -

D Delete the next (following)
character.

K Delete from where you are to

to the next CR LF, inclusive.
Insert text XXX.

Search for XXX, Searches and Inserts
are delimited by ESC (altmode).
Go and do it.

All finished, exit to monitor.

Ixxx <ESC>
Sxxx<ESC>

<ESC> <ESC>
EX<ESC> <ESC>

Thus, to delete the 10th line of a Basic program called FOO:

TECO FOO.BAS ICall in the editor

* ITECO prompt

oL IMove 9 lines forward
K IKill it

< ESC><ESC> IExecute the command
* ITECO prompt for next
command

TECO commands may be given one at a time. It is usually more
convenient to type, in a single command string, several com-
mands that form a logical group. <ESC> are only needed
between things that require a delimiter (i.e., searches). Typi-
cally, this looks like

*OLKSS 1$ is an <ESC> echo

To delete the 10th character in the 10th line:

*9LOCDSS
To delete CARL from the text:
*SCARLS IDelimit the search with one
<ESC>
*.4D IDelete the four characters
(- means before)
*VSS IView it and do it

To insert RSTS:

*IRSTS PRO<CR> INote that carriage return places
55 you in the next line and is re-
quired to insert a line.

Note that <RETURN> is not used very much in TECO. < ESC
delimits searches and tells it when to go. Thereason is that you
may someday want to operate on <RETURN>> (delete it to
move two lines into one) and using <ESC > divorces TECO
delimiters from the standard monitor delimiter, <RETURN>.
Notice that now you can invoke the editor, search, add, and
delete either lines or characters, and exit saving the file and
creating a backup.

You have now notices that commands can take numeric
arguments (-4C) and they can operate forward and backward.
An important TECO concept is the pointer (where you are in
the file). Movements C and -C are relative to the current pointer
position while L (or -L) puts you at the beginning of the next (or
previous) line. After a little practice you will find keeping track
of the pointer second nature, and movements becoming auto-
matic. The single letter commands are somewhat cryptic but
they make movements in the text and commands easy to type
in and perform.

Why edit at all? | know RSTS sites where they don't use any
editor except for patching cusps, and then it is a cookbook
approach. | have implemented TECO as an editor here because,
simply, it increases programmer productivity. We can change
all the "GET #File.5%" in one swell foop, or realign an output
format quickly and easily. We almost never retype a whole line
at the monitor level unless we are debugging interactively. In
short, editors allow a single change on a long line to be made
quickly and easily and they allow multiple changes to be made
(in loops) with one command.

This is not meant to be a TECO text, but simply an argument
that you can use TECO easily. A programmer with interactive
experience can read the beginners TECO section in the manual,
and begin editing in less than half a day; and be proficient in
less than one week of editing. TECO offers not only editing, but
a powerful string manipulation language that has great power
and features.

November/December 1979

page 27

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

? How TECO 7

Martin Pring, D. Phil., Director, Medical School Computer Facility
University of Pennsylvania, 37th and Hamilton Walk, Philadelphia, PA 19104

The previous article has convincingly argued the case for
‘Why TECO?'. One cogent reason is that, despite the richness
of the command set and the consequent power of TECO as an
editing language, the beginner can perform any straightforward
editing task very concisely with only a small subset of its com-
mands, such as C, D, K, T, L, I, N, FN and the basic loop structure.
There are, however, a few pitfalls for the unwary: specifically, a
certain class of operations, when performed in the most direct
way, can be very inefficient. Furthermore, certain more intri-
cate problems can be solved very simply if one knows, or at
least knows of the existence of and can look up or enquire about,
a much more extended set of commands. The purpose of this
article is to warn of some of the pitfalls and, in pointing out how
they may be circumvented, to engender an appreciation of the
power and utility of some of the more advanced commands.

In order to understand how it is possible to be inefficient in
TECO it is necessary to have some understanding of how it
functions internally. Editing is performed on a core-resident
text buffer that is filled from and emptied to the input-output
buffers. In default of direct commands TECO will manage the
flow into and out of the text buffer itself as needed and so this
schema will usually be transparent to the beginning user. The
limits of the text buffer are only appreciated when occasional
attempts are made to type or delete text beyond them, and
the commands whereby its size can be manipulated by de-
manding input to or output from it are, for the most part,
unknown. The importance of the text buffer to the considera-
tion of efficiency arises from the fact that, each time any
element of a command string causes it to grow or shrink by the
addition or deletion of characters, it must be completely re-
packed. Most inefficiencies are characterized by approaches
that repeatedly and unnecessarily insert/erase small numbers
of characters into/from the text buffer. It is this class of ineffi-
ciency that | shall address here.

Before passing to some specific examples, I should briefly
mentioned another factor that might be perceived as a poten-
tial source of inefficiency. This is that most TECOs are interpre-
ters. They take each element of a command string, decode it to
determine the required action, then perform that action. If the
element is in a loop it is decoded in each iteration; there is no
storage of compiled (decoded) instructions, as for example is
the case for a FORTRAN or BASIC plus-2 program. Although it
is always desirable to use as concise an equivalent command
string as possible, especially within loops, this factor is seldom
a significant one, particularly for the beginning user. The
reason is the very conciseness of TECO commands: the over-
head of interpreting them is in general a small percentage of
the time consumed in executing them.

Let me illustrate the problems associated with repacking
TECO's text buffer with a real-life example. | have a FORTRAN
program originally designed to output the numerical tablesl|it
calculates to a terminal as efficiently as possible, in terms of

type-out time. Each column is six characters wide and columns
are separated by a single blank. To retain as much precision as
possible output formats are constructed internally, and for
simplicity each element of the table is output separately,
suppressing all carriage control. For example, if Xis determined
to obey 100.0 £ X < 1000.0, it is output by:

WRITE (KB,FMT2)X

where the array FMT2 contains (‘+'F6.2.$)(equivalent to print
#KB, using "### ##", X;). As so often happens, this program
was later modified to fulfill a purpose other than that for which
it was originally designed. Its output became too voluminous
to direct to a terminal and was therefore sent to a disk file for
later printing. Unfortunately, in our FORTRAN the character S
at the end of the variable format only suppresses carriage
control when output is to a physical terminal. In the disk file
each element of a row, such as X above, occupied a separate
line beginning with +. When the file was output to the printer
with the interpretation of the first character of each line as
FORTRAN carriage control, all of the columns were overprinted
on top of one another.

The most immediate solution to this problem was plainly to
search the file for and delete each of the very frequent occur-
rences of the character string < carriage return> < linefeed> +.
The simplest way to do this is to use the A command repeatedly
to read the whole file into the text buffer, for reasons explained
below, and then search-replace the string with an FS command.
Since it is being replaced by nothing that is deleted. a delimited
search-replace is the most elegant construct:

* < @FS/
+//,>EX$$

Execution of this procedure with a small test file of only 20,000
characters and 2000 occurrences of the string to be deleted
took 32.6 seconds of CPU time (KI10 processor). The reason
for this excessive time is plain: for each string deleted all sub-
sequent characters in the text buffer had to be repacked
equivalent in this case to unpacking and repacking the whole
20,000 character buffer 1000 times. Since the time taken by
this procedure grows as the square of the size of the file, it
is plainly inapplicable to cases of realistic size.

This approach can be improved by working with a text buffer
of normal size, without appending to it, and using the FN com-
mand to search through the file, in place of the FSin the above
example. A problem with this is that TECO will, if it can, onfilling
the text buffer terminate it at the end of a line. Therefore, a
small proportion of the <carriage return> <line feed> +
strings are split across consecutive text buffers and therefore
not found in the first pass through the file. Thus, the file must

page 28

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSI 0NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESS!ONALRSTSPROFESSIONALRSTSPROFESSION

be repeatedly searched, reporting each time a string is found
in sweeps after the first, until none are found (this is the
reason that reading the whole file into the text buffer in the
first solution so much simplifies it). Thus, after the first pass
through the file, we do:

*< @FN/
+//:1 AXT A>EXS$S

For the test file described above it was on the fourth sweep of
the file that no Xs were typed out. That is, no example of the
string was found and most probably, but not certainly, all occur-
rences of it has been deleted. This took a total of 16.3 seconds.
Although this time only grows proportionately to a power of
the size of the file of about 1.3, it is still unacceptably large for
routine practical use.

To obtain a really efficient solution to this problem one
must control the emptying and filling of the text buffer oneself
The following example shows how this can be done:

*<OUAL S
+$: QA,.-3P .UA >B.QAK ZUZ A (QZ-Z)"E-1; * >EX$S

The outer loop initializes the inner loop by storing zero in
Q-register A, OUA. The inner loop then searches the current
text buffer for occurrences of the string with the S command.
Each time one is found, the text from the end of the previous
occurrence to the beginning of the current one is copied to the
output buffer without modification, QA,.-3P. The pointer posi-
tion at the end of the current occurrence is stored in Q-register
A, .UA. When no more are found, the inner loop exits, ; and the
outer loop continues by deleting all of the text from which that
to be retained has been copied, B,QAK. The number of charac-
ters left in the text buffer is recorded in Q-register Z, ZUZ, and
more text, if available, is read into it from the input buffer, A.
A test ismade to determine whether the number of characters
in the text buffer has changed, (QZ-Z)"E, and if it has not, the
task is over and the loop is exited, 1;. Otherwise, ', the outer
loop is reiterated.

This operation took 5.0 seconds of CPU time on the test file.
It only requires a single pass of the file, and the time required
depends linearly on the file length.

Very similar procedures can be applied to cases where re-
peated insertion, rather than deletion, is required. As an
example, a large, profusely commented FORTRAN program
had all of its comments neatly enclosed in boxes of asterisks:

skt ool ok koo oo ok oo sk s ol oo oo ook ko

C* *
(G 5 comment *
cx comment *
..... etc.

In the course of extensive improvements to the program the
comments were further expanded and modified beyond recog-
nition. This was done in free format and the net effect was to
shift the right-hand margin of asterisks to the left and make it
extremely ragged. It became plainly desirable to restore the
readability of the program and comments. Since the parent
program came from cards, the original line length was 80
characters.

To realign the right margin, a line of 78 blanks was inserted
at the beginning of the first text buffer and then:

*< 8OUA <S
CS$:.UB L 3R .UE (QB-QE+78)UN QN"N QA,.P B,QNP .UA ">
80.QAK ZUZ A (QZ-Z)"E 1;* > B,80K EX$$

The outer loop is very similar to that of the previous example,
except that the first 80 characters of the text buffer contain
the line of blanks (including carriage return and line feed) and
are ignored. In the inner loop comment lines are sought, identi-
fied by < carriage return> <line feed> C. If found, the pointer
position after the C, .UB, and that before the terminal asterisk,
L 3R .UE, are stored in Q-registers B and E respectively. The
number of missing characters is calculated in Q-register N,
(QB-QE+78)UN, and if non-zero, QN"N, the new text prior to
the terminal asterisk, QA..P, and sufficient extra blanks, B,QNP,
are copied to the output buffer. Q-register A is then updated
with the current pointer position, .UA. Note how much more
efficient the insertion of the blanks is made than with the
simpler equivalent QN <1 $> , in which for each iteration the
text buffer must be repacked.

It should be plain that the techniques illustrated in the two
examples discussed above for deletion and insertion are equally
applicable to replacement or in fact any mix of the fundamental
processes. My third and final example addresses replacement
of strings of variable length. It concerns a problem that we had
in bygone days reading 7-track even parity BCD tapes generated
on *BM machines. (Since the growth in personal computer use
is likely to make this journal the subject of family reading, | have
eschewed obscenity. In this case the asterisk replaces the
operative vowel to protect those of tender years or sensibilities.)
Because a zero frame at even parity has no bits set and there-
fore cannot be used for synchronization, their character code
was modified so that all blanks on them were replaced by %
characters. The problem of course was to restore the blanks.

We procede much as in the previous example, placing at the
beginning of the first text buffer a line of blanks greater than
the longest contiguous string of % in the file, say 148 in num-
ber. Then:

* <150UA < S%S: QA..-1P .UB ZUA :S1 N%S$ S (.-1)UA " (QA-QB+1)UN
QAJ B.QNP >150.QAK ZUZ A (QZ-Z)"E 1: >B.150K EX$$

This command string follows principles very similar to those
discussed in the first two examples, and | leave it as an exercise
for the reader to work out how it performs the required task.
The command :S N%S"S searches for any character that is
not % and returns a truth value that is tested for success in
the search.

| hope that the above examples have given some idea of the
efficiencies that can be achieved with TECO when many repeti-
tive modifications must be made to one file. In general, in such
cases the most efficient procedure is not the simplest and
involves more advanced commands. The choice whether to
devise and use it will depend on the length of the file, the
frequency of the required modifications, and how often in the
future the same or a very similar procedure will need to be
employed. However, a knowledge of these more advanced com-
mands will always be found to be useful. In the second example
the calculation of the number of blanks to be inserted to justify
the right margin could not have been made without them, and
the corrections either could not have been made, or would have
required time-consuming manual or trial-and-error counting.

November/December 1979 page 29
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

.]
FINANCIAL MODELING
FOR DEC PDP11 USERS

Your PDP11 can do much more than general
accounting work. |

FINAR adds a simulation capability to your
management information and lets managers
build their own conversational models for all
kinds of planning: budgets, forecasts, cash
flows, project evaluation, consolidations, etc.

FINAR

the Financial Analysis
and Reporting Language.

FINAR SYSTEMS

132 Nassau Street, #212
New York, NY 10038
(212) 222-2784

(415) 348-6810 San Francisco
(312) 698-2023 Chicago
(713) 626-9577 Houston

AS ADVERTISED N 15.} DATAMATION
Y

page 30

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALI

November/December 1979
RSTSPROFESSIONALRSTSPROFESSION

INTRODUCTION TO RSTS DIRECTORIES

By Scott Banks, Nationwide Data Dialog

1.1 To begin with . ..

This is the first installment in a series of articles whose pur-
pose is to explain the RSTS directory structure. Our goal here
is to begin modestly, procede with diligence, and conclude with
a really good understanding of directories.

Generally, documents on this subject assume the reader
already knows a great deal and is simply looking to clarify some
particular facet of directory structure. By contrast, we will
cover as much basic theory as possible as well as delving into
the details. Follow along with us, and you will be able to put our
notes and examples to actual, practical use. Understanding the
directory structure and how RSTS plays with it gives system
programmers an edge in reaping machine performance. As an
added bonus, you can enhance your crash recovery arsenal with
some tried-and-true (albeit last resort) repair and verification
techniques. Although directory tinkering is always considered
the domain of the very brave or the very stupid (depending on
the outcome), it’s nice to own the confidence that you can try
something, heroic yet reasonable, before resorting to back-up
tapes.

1.2 UFDs and the MFD

Let's start with some fundamental definitions. Each
account (on each disk) has its own directory structure. This is
called a UFD, for User File Directory. To illustrate, the UFD for
[1.2] contains a list of the files belonging to that account,
information including file size, protection code, and other
items that appear on a DIRECT or PIP listing, are contained in
the UFD. One of the critical pieces of information in the UFD,
and one not currently displayed by VO6C directory listing
programs, is the physical location of disk files. This is what
RSTS needs to know when actual reading and writing of data
files is to take place.

In order to find any given data file, the monitor must search
the proper UFD for a specified file name. Before this can
happen, RSTS must know where on disk the UFD itself is. A
non-obvious fact about UFDs is that they themselves are files.
This is an important consideration in dealing with them. The
Master File Directory, or MFD, is a list of UFDs, their location on

disk, and other account related information. There is exactly
one MFD per disk and RSTS always knows where it resides on
the disk. (The MFD begins on device cluster 1, one of the very
few items whose disk location is constant.) The structure of
the MFD is identical to that of the UFDs, although the meaning
of some data elements is altered. This feature allows most of
the same routines, whether in the monitor or in a user pro-
gram, to access either the MFD or any UFD on any disk.

Account [1,1] is the MFD. It doubles as the UFD for files
stored in account [1,1] as well. This is possible because, of all
the files in [1,1], the ones that are really UFD entries (as
opposed to user data files) are flagged as such. This is why we
never see anything except data files in [1,1]. When searching
the MFD for a specific UFD, RSTS ignores data files. In the MFD
(or [1,1] account ifyou prefer), the first entry is a UFD entry for
[1,1] and it points to itself. Looking for a file in [1,1] still
requires a search of the MFD for the [1,1] UFD. This is a result
of the fact that only the MFD can be found by directly reading a
known spot on the disk.

1.3 The Great and Mighty FIP

There is a section of the RSTS monitor called FIP, the File
Processor. Mostly, FIP worries about directories. When creat-
ing, extending, or deleting a file, you are relying upon this
nimble code to keep your directory in good shape. FIP knows
how to find the MFD and each UFD, and it knows how to
retrieve, insert, remove, and modify both data file and UFD
entries.

FIP is considered serial in that it performs a task for only one
user job (or the RSTS monitor) at a time. It doesn't go on to
another task until it brings things to a logical conclusion. Since
adirectory is a linked-list, this gives RSTS the security it needs
for multi-user file additions and deletions. Rule number one
about directories is . . . “Look, but don't touch.” The confusion
that results when you cross wires with FIP can cost you an
account or worse — a disk. However, there is nothing at all
harmful in the act of reading a UFD or MFD and seeing what's
there.

Clearly, RSTS spends much of it's time doing FIP operations.
At SYSGEN time, ‘FIP Buffering’ may be selected. This option
permits FIP to use a special section of main memory, called

November/December 1979

page 31

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

XBUF, to cache directory information. FIP attempts to keep
recent directory blocks in memory, thus avoiding a disk
transfer each time a section of some directory is required.
When a directory must be updated, the data is rewritten
immediately to keep the disk current — essential in the event
of a crash.

1.4 Device Clusters

Allowable RSTS clustersizes are positive integer powers of
2 up to 256. Each disk has it's own pack clustersize. The
minimum pack clustersize for a given disk is directly related to
the number of physical disk blocks on the device. RSTS
demands that it be able to specify any cluster on the pack by
using an unsigned 16-bit integer. This sets a limit of 65536
device clusters, O through 65535. For example, an RKO5
(2.5MB) has a minimum pack clustersize of 1, while an RPO6
(176MB) requires 8 blocks.

The 16-bit integer used to describe a physical cluster is
known as a device cluster number, or DCN. All disk references
are based upon the DCN, data files and UFDs alike. To refer-
ence a single block, one must know the device cluster in which

Coming next issue .

it resides. Knowing which of the (possibly) several blocks it is
within that device cluster completes the deal. User programs
related to data files by block number. a far easier scheme for
programmers. The directory holds the device cluster in-
formation.

Each data file has it's own cluster factor and list of device
clusters that compose it's physical existence. The clustersize
for any particular file is minimally the pack clustersize. If the
cluster factor for a file is greater than the pack clustersize,
every entry in the list of DCNs is really the first DCN for the
larger clustersize. As clusters (whatever their size) are always
contiguous blocks on disk, it's then easy to identify any DCN
within a large cluser. One of the reasons that clustersizes are
defined as powers of 2 is to guarantee that some even number
of small clusters will fit into a larger cluster.

UFDs also have a cluster factory and list of device clusters.
The MFD, as cited earlier, is responsible for retaining said
items. Like data files, the UFD clustersize can never be less
than that of the pack. The maximum, however, is 16. This
limitation is based upon the nature of the directory structure.
Another limitation of UFDs is that they may have no more than
7 clusters. We'll see why this is so a little further on. For now,
concentrate on that fact that a UFD is built just like a data file
— a cluster factor and a list of device cluster numbers.

.. Inside the UFD

More storage
at lower cost

from SITE.

Cut equipment costs and boost storage capacity with
systems from SITE. We'll take your RP/RM systems in

trade for new storage devices from System Industries—
world’s]argest independent disk systems maker. And
we’ll give you savings you can really count. Example:

Move from 400 to 600 MBytes with our systems. At less

than half the DEC price.

SITE also offers used DEC-maintained RP/RM systems

at far below the new cost. Contact us today for details.

RPO6
RPOS
RPO4
RMO3
RMO2

SITE (System Industries Trade & Exchange Co.)
525 Qakmead Parkway, Sunnyvale, CA 94086

(408)732-1650

Ask us about our new Aries PDP-11 controller
priced at only $695, quantity one!

page 32

November/December 1979

RS’TSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESS}ON

DEC TIMESHARING (1965)

By Peter Clark

The majority of DEC timesharing customers are relative new-
comers as far as timesharing is concerned. Many may also be
newcomers to Digital as well. The University of Pennsylvania
Medical School Computer Facility (MSCF) has been a DEC cus-
tomer since 1965. In fact, we purchased the first timesharing
system available from DEC, the PDP-6.

Before 1965, the MSCF owned a Control Data 160-A. The
160-A would probably be classified as a moderate sized mini
today. It was a single user machine with no batch processing
capability. Programmers and/or users would go to the compu-
ter room, sit at the console, load the paper type bootstrap and
start up a program. This was our environment when we first
started to hear about “timesharing”. Of course, my first
thought was, "It sounds OK but it can’t possibly be as good as
having the entire computer to yourself. Besides, who the hell is
Digital Equipment Corporation and what is a PDP.”"

We soon found out that DEC was a computer manufacturer
in Maynard, Mass. and PDP was a ““Programmed Data Proces-
sor”. At the time, there were not many places to go to see a
PDP-6, (I think DEC made 24 of them). We were lucky. Applied
Logic Corporation in Princeton, NJ already had one.

My first session on a timesharing system was at Applied
Logic to try to convert a large FORTRAN system. The conver-
sion from CDC FORTRAN turned out to be easy. It would be
with FORTRAN ILI.

At first exposure to the terminal (Teletype Model 33), | was
a bit apprehensive about screwing up other users. | was assured
that I could type anything I pleased and the system would not
crash. This turned out to be very nearly true. | was sold on time-
sharing when I realized that [could do everything I could do on
the 160-A and then some.

When our own PDP-6 came a few months later, we became
“true” customers. We soon found out what the deficiencies of
the system were. The first problem turned out to be with DEC’s
delivery system. The driver of the truck that picked up our sys-
tem from Maynard drove his 14 foot truck under a 12 foot
bridge. Most of the computer survived. Our delivery date was
moved back a few weeks, and the printer (128 columns, 600
LPM from Analex) ran for two months naked: No case.

The configuration we ordered had 64K words of memory
(36 bit words), four dual dectape drives, 2 556 BPI magtapes
(7 track), a 600 LPM printer and a 300 CPM card reader. You
will notice the absence of any disk. This meant that any system
access required reading a magnetic tape device. In those days,
the dectapes were used for that. The dectape was used rather
like a random access device. One could read or write in fixed
blocks on the tape in sequential or random fashion. The access
time was measured in seconds or possibly minutes if other
drives were in use.

There was no such thing as swapping jobs which meant we
had to sign up for the amount of core required. You reserved a
terminal, XK of core and a time slot (max one hour). This as-
sumed we knew how much core was needed which frequently
was not true. There was no such thing as shareable programs
in 1965. Every user that was compiling had to have his own
version of the compiler in his core area. Of course, in those days,
the FORTRAN compiler was 11 or 12K words and the operating

system was about 6K words. Today our TOPS-10 operating
system is about 60-70K words. We could effectively support
about 4-6 simultaneous users with much bickering about who
had more core than he should have, etc.

Cache, or semi-conductor memory was not in use at this time,
but the “six” did have some fast memory. The first 20 (octal)
locations of core were mapped into “fast memory"; a special
set of locations that were accessed in the [nano-second] range
(we never knew how). These locations were used as fast accu-
mulators. The real first 20 locations of core were inaccessible
to the programmer and were known as “shadow memory".
This shadow memory had a very important use; there was no
bootstrap module in this machine, so the bootstrap was kept
in the shadow memory. The procedure was to use the shadow
memory to read a paper tape, which read the monitor off a dec-
tape. When hardware failures occurred, it was likely that the
shadow memory would be wiped out, necessitating that it be
toggled in through the console switches, all 16 instructions
(36 bits = 36 switches). The then system manager (still is!) had
a success/failure ration of about 10-1 favoring failure, so it was
up to the resident CE to toggle it in. (He had it all memorized,
which should give you an indication of how often it was used.)
All of our CE's were good, but the best was something to see.. . .
Arthur Rubenstein (he plays the piano) never looked this good!
His hands moved so fast, it was impossible to see each individ-
ual movement. Although he now heads up the Cherry Hill, NJ,
Field Service office, he still has the shadow memory bootstrap
for the PDP-6 memorized.

The sequence to compile, load and execute a FORTRAN pro-
gram was as follows (The (*.") dot, as RT11 people know, is the
monitor prompt):
RF4
; get FORTRAN compiler in 12K of core

*DTA1:PROG=DTA2:PROG1,PROG2.,PROGN
; wait another minute or so to compile

: sources from DTAZ2 and put the relocateable
; files on DTA1. (Pray for no errors.)

*AL
; back to monitor

R LOADER 30
; get loader in 30K

*DTA1:PROG
; load in program

*SYS:/S
; search system
; dectape for FORTRAN library routines
: wait a couple of minutes

SAVE DTA1:PROG
; save loaded program

START
; begin execution.

November/December 1979

page 33

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIDNALRSTSPROFESSION

?DEVICE LPT NOT AVAILABLE

: whoops, someone else is using the printer now. let's go
see how long he will be.

The above sequence no doubt seems very archaic, and it was.
But, at that time, disks were still a very new thing and anyway,
DEC didn't sell or support one with the PDP-6. Shareable code
couldn't really be supported with PDP-6 hardware even if it had
been thought of. Queueing of input and output really needs a
disk to be done effectively. We could have had printer output
go out to magtape or dectape but there was no software avail-
able to make that process easy or manageable. i.e., schemes
for labelling output on tape, etc. There were no command files
supported. No “CCL" (concise command language). Today on
the TOPS-10 system, to do the above compile, load and go se-

quence, you type:

EX PROG1,PROGZ, ... PROGN
or

[EX @PROG.CMD ; command file

This capability, which came from a DEC customer originally,
was not available until the very early 70's.

Two editors were popular then, LINED and TECO. LINED
was a line number oriented editor that required line numbers
on data that was to be edited. PIP provided switches to add and
delete line numbers. It operated like the BASIC Plus monitor
editor; i.e.. add or delete whole lines. There was no way to
change a part of a line. TECO (Text Editor and Corrector) was
used by more sophisticated users (has this changed?) and ran

not unlike today's version (yes, TECO is on all DEC computers) -
notwithstanding 15 years of refinements.

Multiplexing (we called it scanning) was handled by a PDP-8
in half duplex mode. Full duplex came with our first disk (RPO2)
and monitor. We had one dial in line and our ubiquitous CE
rigged a red light to tell us someone was on. The “8" could not
sense the carrier and had no way of knowing when someone
hung up or was cut off, so it was not unusual for a person dial-
ing in to find a job already attached to that keyboard: KB to you,
TTY to us.

The next real breakthrough in timesharing for us was the pur-
chase of an RP02 disk pack drive and disk monitor. Then we
had real time-sharing. Jobs could now be swapped to the disk
and we could easily handle 20-30 users. Terminal data was
handled in full duplex mode and a new innovation was / xxx/ to
show what had been deleted when rubout was typed.

In the 60’s DEC field service was much different that today.
We had a resident service engineer (CE). The card reader re-
quired almost constant adjustment and it seemed he was
always busy fixing something. We used to estimate MTTR
(Meantime to Repair) by the number of open cabinet doors,
and there were a lot of doors. it seems he was always fixing our
TTY Model 33's. When we moved to Medel 35's, we thought we
really had it made. 10 CPS was great if it was reliable. Now we
see our service technician once a week for an hour or so. I won-
der why our rates haven't gone down???

Current DEC timesharing systems have learned a lot from
the old PDP-6 days. | hope you RSTS users appreciate the
efforts of us old PDP-6 users.

RSTS/E SOFTWARE PACKAGES

B KDSS, a multi-terminal key-to-disk data
entry system. (Also available for RSX-11M.)

B TAM, a multi-terminal screen-handling
facility for transaction-processing applica-
tions. (Also available for RSX-11M.)

B FSORTS, a very fast sort. Directly sorts
RSTS/E files containing up to 16 million
keys or records. Up to 70 times as fast as
the RSTS-11 Sort package in CPU time.

B SELECT, a convenient, very quick package
for extracting records that meet user-speci-
fied selection criteria.

® BSC/DV, a device driver for the DEC DV11
synchronous multiplexer that handles most
bisynchronous protocols.

B COLINK, a package that links two RSTS/E
systems together using DMC11s. Supports
file transfers, virtual terminals, and across-the-
link task communication.

m DIALUP, a package that uses an asynchro-
nous terminal line to link a local RSTS/E
system to a remote computer system. Sup-
ports file transfers, virtual terminals, and
dial-out through a DN11.

(The performance-critical portions of the first
five packages are implemented in assembly
language for efficiency.)

Evans Griffiths & Hart, Inc.
55 Waltham Street
Lexington, Massachusetts 02173
(617) 861-0670

page 34

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

A DATABASE SYSTEM FOR
A HOSPITAL RADIOLOGY DEPARTMENT

Jack W. London, Ph.D. and Ronald Arenson, M.D., Department of Radiology,
Hospital of the University of Pennsylvania, Philadelphia, PA 19104

The Radiology Department of the Hospital of the University
of Pennsylvania has developed an administrative database
system using BASIC-PLUS under RSTS. The CGR Medical Cor-
poration, an x-ray equipment manufacturer, has collaborated
in the development of the software. This system is unique; no
other Radiology database system handles in an integrated
fashion all the various functions of a hospital Radiology depart-
ment. These functions are: patient registration, radiological
examination scheduling, tracking of radiographs (x-ray films),
patient tracking, reporting, statistics,teaching files, and bill-
ing. In addition, this database system is also used by the
hospital Medical Records Department for accessing patient
records and assigning Medical Record numbers.

The hardware for this system consists of a PDP-11/70 with
160 KWords, two RP04 disk drives, one TU16 tape drive, two
DH11 multiplexers, 20 CRT's (mostly VT52’s), three LA36's
(one being the console), four Diablo 1620 printers (300 baud),
24 Identacon pen readers, a Hewlett-Packard Optical Mark
reader, and one line printer (300 Ipm). An additional line
printer and tape drive, as well as more memory, are on order.

USER-LEVEL SYSTEM DESCRIPTION

The software may be described in terms of functional
modules. The patient registration module enables the Radi-
ology Department receptionists to determine by name,
number, or phonetic (IBM Soundex) searches whether a
patient is already registered. For new patients, their name,
sex, birthdate, address, telephone number, primary physician,
and (if an inpatient) hospital location are entered via CRT.

The radiological exam scheduling module takes many facts
into account. In addition to finding sufficient available time
for a given exam in the proper exam room, consideration is
also given as to whether the patient is ambulatory, the source
of the patient (e.g., from the Emergency Room), and any spe-
cial techniques to be used. This module also warns of any
similar or conflicting exams already completed or scheduled
for a patient. Once an exam is scheduled this module prints
the appropriate exam documents on a Diablo printer, includ-
ing a bar code which points to a given exam order record.

The x-ray film tracking module uses bar code labels printed
by a Diablo printer and Identacon light pen readers to locate
the jackets containing patients’ radiographs. These film
Jackets are tracked to various locations within the depart-
ment as well as external long-term storage Ications. Further-
more, the film tracking module records loans of film subfolders
to physicians. Bar coded labels pointing to a film loan record are
prepared upon receiving a request for films. This label is then
scanned when the films are sent out and upon their return.

The patient tracking module makes certain that patients
do not become “lost and forgotten™ after arrival within the
department. The system is notified of the arrival of a patient
by a receptionist using a CRT. A “clock” is then started, and if
the patient has not had his exams completed within the ex-

pected time, his name is automatically entered on a “delayed
patient” list. This list is displayed at regular intervals on a
CRT for review by the head radiographer, who can investigate
the cause of the delay. It should be noted here, that the sys-
tem is notified of the completion of an exam by the quality
control radiographer scanning the bar code printed on the
exam document.

The reporting module enables transcriptionists to enter
the radiologist's findings from dictaphone to the system
using CRT's. Word processing ability is supplied by software
(the terminals are “dumb™). An automatic mode of reporting,
in which the radiologist scans a bar'coded standard report
and then the exam card bar code, is also available for the
many “normal” reports. This mode of reporting bypasses the
transcription pool, and is therefore very efficient. With either
mode of reporting the computer generates the final hard-
copy, ready for distribution.

The statistical module generates reports on film usage,
patient delays, radiation exposure, and repeated exams.
These reports can be generated with many combinations of
sub-categories, such as staff radiographer, exam room, pa-
tient source, and exam type. The data for these reports are
obtained from the exam order data base file along with infor-
mation read from mark/sense cards, which are filled out by
the radiographers when the exam is performed (for example,
they record the radiation factors on the mark/sense cards).
The film usage reports serve as inventory control.

The teaching file module enables interesting cases to be
readily referenced by standard anatomical and pathological
codes (as well as by patient). Coding and diagnostic informa-
tion is entered via mark/sense cards.

The billing module prepares a magnetic tape with daily
charges for the hospital data processing department, which
does all inpatient billing. Income to the department has in-
creased since the computer system went on-stream, since
the department now has an organized means of accounting.
The system also prepares charge documents and bills for
outpatients, who are billed by the Radiology Department
billing office. Currently, an accounts-receivable module is
under development, along with programs to prepare third-
party (e.g., Blue Cross) forms.

SOFTWARE DESCRIPTION

We currently are operating under RSTS version 6C. All pro-
grams are written in BASIC-PLUS. Programs are designed to
occupy 8K or less (this design goal has been met in almost all
instances). About 30 users are timesharing during prime
shift.

The database resides on the two RP04 disk packs. All data-
base disk accesses are performed by a single database
manager progrm (DBMGR), which runs with priority zero. A
user-level program wishing to modify the database communi-
cates with DBMGR using the RSTS message Send/Receive

November/December 1979

page 35

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

system calls. The system calls are packaged in a function
(function D), and a function call within the body of the program
is all that is needed to access the database. For example, to
obtain a patient’s basic data record (i.e., name, sex, birthdate,
etc.) a program would execute the following statement:

IF FND% (“GD", “PREC", 3%,PATN.KEY$) <> 0,GOTO 32700

This database function call requests a specific block and record
from disk file “PREC"” (the “GD" specifies a “get direct” opera-
tion). The block and record pointers are contained in the string
PATN.KEYS. The data is to be deposited into the null device /0
record defined on channel 3. The key PATN.KEYS$ was most
likely obtained by a previous database call to a key file such as
“NAME", using the first six letters of the patients last name as
a key. (Other key files correspond to the patient’s hospital or
department number, and the soundex code for the patient’s
last name.) A nonzero value for FND% indicates that a data-
base error has occurred (e.g., bad key, empty record, etc.). In
the above example the error handling code begins at line
32700.

Output of exam documents and other printed forms which
require bar-code printing by one of the Diablo printers is
spooled by a program called SUPERQ. This program, which
communicates via Send/Receive system calls with the user-
level programs, determines the proper Diablo to use for
printing, regardless of the source terminal of the request.

The light pens used for reading the bar-codes are multi-
plexed (16 pens may be multiplexed per multiplexer). Each of
the two pen multiplexers appear as a terminal to the system,
and are interfaced through one of the DH11's. The bar-codes
are Identacon 2/5 code.

All user-level programs operate from a non-privileged
account. To use the system, a person must enter their per-
sonal password, in addition to the account password. Confi-
dential patient information (e.g., reports) requires entry of a
social security number.

Each evening the disk database is backed up onto magnetic
tape. Three 3200 foot reels are required. The 1 hour and 20
minutes necessary for the backup is the only regularly sched-
uled downtime for the system. (A disk-to-tape backup pro-
gram written by CGR is used, rather than DEC's backup. A
weekly backup of non-database disk files does use DEC's
backup, however.) Except for when the database is down for
backup, a journal tape logs every modification to a database
file after the disk I/0 has been completed. Thus, should a
crash occur, the database can be restored to its pre-crash
state by reading the 3 backup tapes, followed by the journal
tape. “Father” and “grandfather” backup tape sets are kept
(one set in a safe in another room).

The Radiology Department database system has been in
full-time operation since September 1, 1977. The use of RSTS
and BASIC-PLUS has been successful in this application. The
system is fairly close to being fully developed, with primarily
the accounts-receivable being the only module awaiting de-
velopment. It is our hope that this and similar systems be
commonplace in Radiology departments in the future.

RSTS/E ON VAX
ROSS/V

(RSTS/E Operating System Simulator for VAX)

ROSS/V is a software package, written in
VAX-11 MACRO, which provides a RSTS/E
monitor environment for programs running in
PDP-11 compatibility mode on DEC’s VAX-11.

ROSS/V supports:
B The BASIC-PLUS interactive environment.
B Concurrent use of multiple run-time systems.

B Update mode (multi-user read/write access to
shared files.)

B CCL (Concise Command Language) commands.
B An extensive subset of RSTS/E monitor calls.

ROSS/V runs under VMS and interfaces to pro-
grams and run-time systems at the RSTS/E
monitor call level. ROSS/V makes it possible for
DEC PDP-11 RSTS/E users to move many of
their applications directly to the VAX with little
or no modification and to continue program
development on the VAX in the uniquely hospit-
able RSTS/E environment. Most BASIC-PLUS
programs will run under an unmodified
BASIC-PLUS run-time system.

RSTS. PDP-11. VAX-11. and DEC are trademarks of Digital Equipment Corporation

ROSS/V is available from:

(Eastern U.S))

Evans Griffiths & Hart, Inc.
55 Waltham Street
Lexington, Massachusetts 02173
(617) 861-0670

(Central U.S.)
Interactive Information Systems, Inc.
10 Knollcrest Drive
Cincinnati, Ohio 45237
(513) 761-0132 or (800) 543-4613 outside Ohio

(Western U.S))
Online Data Processing, Inc.
N. 637 Hamilton
Spokane, Washington 99202
(509) 484-3400

page 36 November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

| , s

NAME THE TERMINAL CONTEST: You say you're running three partitions?

We'll give a prize to the first individual to identify this
logoless terminal.

The Great Imposter

November/December 1979

, page 37
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

DOUBLE PRECISION INTEGERS

WHAT: A double precision integer is a signed, 32-bit
binary number stored in four bytes. It has a range of
precision of -(2**31) to 2**31-1.

WHY: Commercial software running under RSTS must
use double precision floating point. These require 8
bytes of disc storage for each one when using CVTF$
format. Double precision integers will store almost as
large a number in only four bytes as there are nowasted
bits for floating point characteristics. Massive discspace
savings are certain in any commercial application.

HOW: Two user-defined functions are utilized. FNDIS$(z)
will convert a floating point operator to a four-byte
string. EG:

LSET TOT.DOLS = FNDI$ (TOTAL) ! CONVERT TO DOUBLE

FNDI(ZS) will convert such a string back to a floating
point operator:

TOTAL=FNDI(TOT.DOLS) | MAKE FLOATING

LAST WORDS: This code will compile in BASIC+ or
BASIC+2. The integers produced are not compatible
with COBOL computational or the ‘long’ integers of the
FPP. The code could be restated using SWAP% to pro-
duce a fully compatible integer.

CREDITS: The code presented consists of a ‘final
re-write by Scott Banks of NDD of a very old function
coded by the author in 1975 and presented in the SIG
newsletter.

1
20010

20020

32767

Ready

By Dave Mallery

EXTEND

I FNDI, FNDIS DOUBLE INTEGER CONVERSION FUNCTIONS
1
DEF FNDI$(Z)
/ Z1%=FIX ((Z+2147483648.) /65536.)-32768.
/ 7=7-65536.*Z1%
/ 7=7-65536. IF 7>32767.
/DI$=".... UNLESS LEN(DI$)=4%
/ LSET DIS=CVT%S(Z1%) + CVT%S(Z)
/ FNDIS$=DIS$
/ FNEND
|

DEF FNDI(Z$)
/ Z=CVT$%(RIGHT(ZS$.3%))
/ 7=7+65536. IF Z<0
/ FNDI=65536.*CVT$%(Z$) + Z
/ FNEND
|

END

SIMET MLABY FAuLY MY

® 8 ¢

Three-hundred megabytes on an 11/70.

QPO PO PP PP PP

@ © Q0 Qo

page 38

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

GAMES

By Joel Schwartz, M.D.

You're stuck on the Expressway traffic again and it's a toss up
— Who will boil over first, you or your car? Your mind drifts for
a moment.

RUN BOMBER

YOU ARE NOW A PILOT IN A WORLD WAR Il BOMBER

WHICH SIDE --ITALY(1), ALLIES (2), JAPANESE(3), GERMANY(4)? 2
AIRCRAFT - LIBERATOR(1). B-29(2), B-17(3). LANCASTER(4)?

YOU'RE BUSTING A GERMAN HEAVY WATER PLANT IN THE ROHR.

HOW MANY MISSIONS HAVE YOU FLOWN?

15, I'm a real ace.

You're back. The traffic seems to be easing. You turn on the
radio to get some news. “The market was down 15 points in
reaction to the raising of the prime rate to 12.75%. The biggest
losers were IBM, RCA ... " You can't bear to hear any more so
you switch to music.

RUN STOCK

THIS PROGRAM PLAYS THE STOCK MARKET. YOU WILL BE GIVEN
$10,000 AND MAY BUY OR SELL STOCKS. THE STOCK PRICES WILL
BE GENERATED RANDOMLY AND THEREFORE THIS MODEL DOES
NOT REPRESENT EXACTLY WHAT HAPPENS ON THE EXCHANGE.

(I'm not so sure it doesn't happen that way! ...

. PRICE/
STOCK INITIALS SHARE
INT. BALLISTIC MISSILES IBM 109.25
RED CROSS OF AMERICA RCA 795
LICHTENSTEIN, BUMRAP & JOKE LBJ 170.
AMERICAN BANKRUPT CO. ABC 151.25
CENSURED BOOKS STORE CBS 115.25
NEW YORK STOCK EXCHANGE AVERAGE: 125.05
WHAT IS YOUR TRANSACTION IN
IBM? +85
* %% %% END OF DAY 1'S TRADING * % % % %
NET
PRICE/ PRICE
STOCK SHARE HOLDINGS VALUE CHANGE
1BM 114. 85 9690 475
* % % **x END OF DAY 2'S TRADING * % % * %
NET
PRICE/ PRICE
STOCK SHARE HOLDINGS VALUE CHANGE
IBM 1325 85 11262.5 185

Terrific! I'm rich!
You're almost home. You could Kill your boss for giving you
that extra work. That S.0.B.I!l But you dare not say anything.

RUN BOXING
OLYMPIC BOXING -- 3 ROUNDS

INPUT YOUR OPPONENTS NAME
? THE BOSS

INPUT YOUR MAN'S NAME

? JOEL

DIFFERENT PUNCHES ARE, 1 FULL SWING, 2 HOOK, 3 UPPERCUT,
4 JAB

WHAT IS YOUR MAN'S BEST? 3

AND WHAT IS HIS VULNERABILITY? 4

THE BOSS" ADVANTAGE IS 4 AND VULNERABILITY IS SECRET.

ROUND 1 BEGINS . . .

JOEL'S PUNCH? 1
JOEL SWINGS AND HE MISSES

JOEL IS ATTACKED BY AN UPPERCUT (OH, OH) . . .
AND THE BOSS CONNECTS . . .

JOEL IS ATTACKED BY AN UPPERCUT (OH, OH) . ..
AND THE BOSS CONNECTS . . .

JOEL'S PUNCH? 2

JOEL GIVES THE HOOK . . . CONNECTS . . .

JOEL'S PUNCH? 2

JOEL GIVES THE HOOK . . . CONNECTS . . .

THE BOSS GETS JOEL IN THE JAW (OUCH!)

... . AND AGAIN!

JOEL IS ATTACKED BY AN UPPERCUT (OH, OH) . . .

BLOCKS AND HITS THE BOSS WITH A HOOK.

THE BOSS GETS JOEL IN THE JAW (OUCHT)

... . AND AGAIN!

JOEL IS KNOCKED COLD AND THE BOSS IS THE WINNER AND
CHAMP.

AND NOW GOODBYE FROM OLYMPIC ARENA.

Just like at work. The boss wins!

You pull into the driveway and get out of the car. A frizby
comes sailing toward you and smacks you in the temple. You
look up but no one is in sight. You open the door and yell “Hidear,
I'm home,” only to be told that because you were 30 minutes
late, no one could wait, dinner is on the table and she’ll be down
to sit with you after she gets off the phone. You eat alone, in
silence. After dinner you go to your study where you hang out a
“Do Not Disturb” sign and lock the door. You dial 789-7146 and
put the phone down on the coupler. You log in and type

RUN ADVENTURE

Yesterday you were at a complex junction ...

November/December 1979 page 39
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

GO WEST

A LITTLE DWARF JUST WALKED AROUND A CORNER, SAW YOU,
THREW A LITTLE AXE AT YOU WHICH MISSED, CURSED, AND
RAN AWAY.

YOU ARE IN BEDQUILT, A LONG EAST/WEST PASSAGE WITH
HOLES EVERYWHERE. TO EXPLORE AT RANDOM SELECT
NORTH, SOUTH, UP, OR DOWN.

THERE IS A LITTLE AXE HERE.

TAKE AXE.

OK.

There is a knock at your door. “Dear, how was your day?"
“Fine,” you say to your wife. “Listen, I'm on an important call.
I'll be with you in about half an hour.” She leaves.

WEST

YOU ARE IN SWISS CHEESE ROOM.

gSTSPROFESSI0NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFME
WEST

Be sure to mail back
your Subscription Card
in time for the
next issue of the
RSTS PROFESSIONAL

 LSYTYNOISSTI0HdS LSHTYNOISSII0HJSLSHTYNOISSTIOHISLSHTYNS

YOU ARE AT THE EAST END OF THE TWOPIT ROOM.
WEST
YOU ARE AT THE WEST END OF THE TWOPIT ROOM.

WEST

S.ROFESSIONALRSTSPROFESSIO NALRSTSPR
SSTA0HSLSHIVNOISSII0HdSLSHTYNOIS!

YOU ARE IN THE SLAB ROOM, THERE ISATHREATENING LITTLE
DWARF IN THE ROOM WITH YOU. ONE SHARP, NASTY KNIFE IS
THROWN AT YOU. MISSES.

Another knock. “Daddy, can you help me with my math?” WHEN YOU NEED f
“I'll be with you in half an hour. I'm involved in something impor-

tant,” you say and you hear the footsteps going away from the D E < :
door. ' e o o

THROW AXE.
TERMINALS
YOU KILLED A LITTLE DWARF. THE BODY VANISHES IN A CLOUD ® \VT-100
OF GREASY BLACK SMOKE. THERE IS A LITTLE AXE HERE. ® LASE
TAKE AXE. ® LA120
® LA180
OK
. PDP11/03
SYSTEMS
YOU ARE IN A SECRET NORTH/SOUTH CANYON.
LSI/11
SOUTH. MODULES
YOU ARE IN A SECRET CANYON WHICH EXITS TO THE NORTH Do L Balery
AND EAST.

Demand . . . Discounts
Demand . .. UNITRONIX

A HUGE GREEN FIERCE DRAGON BARS THE WAY!

THE DRAGON IS SPRAWLED OUT ON A PERSIAN RUGH! 0 “ " I 'nn " I x

Somehow the hastle of the traffic, the news of the stock . CORPORATION
market, your boss and your family don’'t seem as important as :
they did a little while ago. You look over the keyboard and a (201) 874-8500
gleem comes to your eye. You raise your hand and slowly, but
with some authority, type in 198 Route 206 ®m Somerville, NJ 08876

TELEX: 833184
KILL.

page 40

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSl0NALRSTSPROFESSIONALRSTSPROFESS10NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIDNALRSTSPROFESSION

PROGRAMMING STANDARDS

By Scott Banks, Nationwide Data Dialog

1. Goals of Programming Standards

1.1 Introduction

The purpose of this document is to introduce and define
programming standards for Nationwide Data Dialog. With
programming standards, every aspect of the programming
experience will benefit.

This can occur only if the standards are good and if they are
followed. The ideas presented here are not known, nor
intended, to be inherently correct. Rather, they are an attempt
to provide an organized, repeatable set of rules. These ideas
should be expected to evolve, yielding better ideas as the old
ones are applied more severely. If the ideas presented here are
applied and modified in an orderly fashion, better ideas will
certainly result. Perhaps in the meantime, all of us will better
be able to read and debug each other’s code, as well as our
own.

Program structure is an important issue. Wherever possi-
ble, an effort has been made to achieve a bond between the
code standards and good program structure. In addition, pro-
gramming design and implementation guidelines receive some
separate attention.

1.2 Standard Routines

The Programming Standards are heavily oriented towards
the concept of standard routines. These are functions and
subroutines that have been designed to general and tested to
be reliable. Every standard routine has its own variables and
line numbers. Special provisions are taken to ensure that
variable usage and line number allocation can't conflict with
application code.

A program is divided into two sections. The applications
programming area is from line numbers 1 through 19999,
with restrictions placed on the specific use of certain areas.
The lines 20000 up to 32767 are devoted to standard rou-
tines. No application program is permitted to code above
20000.

Standard routines may be appended if they are needed.
Entire functions of subroutines may be deleted during the
course of the program design, but no standard routine may be
modified. Those standard routines that do require custom
tailoring use parameters defined before line 20000. This may
include variables, arrays, DIM, DATA, etc.

A given standard routine will work the same way in every
program in which it appears. Multiple versions may be offered
to meet space or other design constraints. For multiple ver-
sions, the decision to use the same line numbers versus an
independent set is based upon the needs of the particular
routine.

The design and maintenance of standard code is the respon-
sibility of those who really care. Ensuring simultaneously the
many opposing qualities needed by standard routines is a non-
trivial task. To name a few — unique variables and line num-

bers, generality, efficiency, ease of use, reliability, expand-
ability, and upwards compatibility (for new versions).

1.3 Applications Programming

Many restrictions are placed upon applications program-
ming. They are worth it. The common initial reaction of “This
is too much trouble” is readily offset.

By defining line number allocation, a program becomes
predictable as to just where to look for existing code as well as
providing a place for adding code. The rules for variables
provide, at the least, a grouping scheme. More than that, they
provide a basis for determining which variables ‘belong’ to
which modules. This is advantageous in design, invaluable
during debug and maintenance.

The opportunity for programmers to write creatively is not
only enchanced, it is encouraged. Looking for the best struc-
tures and techniques is still the most fascinating aspect of
coding. One should never take the view that the standards are
constraints. It's quite the opposite.

2. Variable Usage

2.1 Standard Variables

Standard routines have a set of variable names that can
never conflict with those used by application code.

Standard variables are always two or more characters long,
and never contain any single dots. If dots are used they must
appear in pairs. This applies to integer, floating point, string,
and array names. Standard functions will always be named by
this convention.

A given standard function may leave useful data in a stand-
ard variable, making it available for the main program. Also,
when specifically defined, a standard variable may be given a
value by application code in preparation for a subsequent
event.

In no case may application code use these variables for any
other purpose, thus hampering the action of any existing or
future standard routine. No code will rely upon the value of a
variable that is not actually defined as the output of a standard
routine.

In the design of standard routines, careful attention must
be paid to wise selection of variable names. Conserving space
while providing mnemonic symbols represents the major
trade-off. Also, variables that interact with the system, or a
planned extension, must be avoided. Standard Variables with
no dots are expected to be those most commonly defined.
When the two-dot approach is used, the characters preceeding
the dots can be used as a grouping technique. The application
variable section details this concept.

November/December 1979

page 41

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

2.2 Application Programming Variables

The set of variable names to be used by application pro-
grams is that of all multi-character names with single dots
between alphanumerics. No standard routine will ever modify
any variable with single dots. it is expected that a single dot
will normally be used, the multiple (but not contiguous) dot
format is for those cases that require it.

This rule applies to all types of variables, arrays, and func-
tion names that are defined in application code.

2.2.1 Naming Convention

Application variables are subject to a naming standard,
which exists for ease of expansion and transportation of code.
As all application variables must contain at least one dot, that
dot will be put to good use.

The basis of the naming convention is the concept that a
variable ‘belongs’ to a specificroutine or set of related routines.
Normally, a variable will be defined as three characters, a dot,
and three more characters. The first three characters will rep-
resent the group to which the variable belongs, while the
second three will describe its specific use.

For example:
CUS.NAMS Refers to the name field in
the customer file.
CUS.BLK% Refers to a disk block in
the customer file.
SRT.TMP$ This string is used by a sort

routine to hold a temporary value.

Note that the group specifier, CUS for instance, will usually
refer to a data file. It might, however, refer to some section of
code that performs a well defined task. In-core sorting, key-
board input, and field validation are common examples. By
looking at a variable one can get an idea of not only its informa-
tion content, but also where it has been assigned a value.

In most cases, this XXX.YYY approach will work well. Some-
times, many data items are fielded in a buffer, and the sensible
combinations of three letter groups is limited. Simply go to an
XXX.YYYY format, preserving the group name while expand-
ing the specific usage identifier. This should be the exception,
but it is available. If this path (or even three-dot-five) is taken,
it should be logically applied. It should be used for all variables
that appear together within the group, but not for all variables.
The additional expansion path available is that of multiple,
non-adjacent dots. Using three-dot-three-dot-three lends a
nice structure to programs that need it (and can afford the
space).

Another limitation is the bulk of the variable names them-
selves, as they do take up space and do require repeated
typing. Shortening the group name to one or two charcters for
highly used groups is allowable. If a great deal of fielding and/or
reference is made to the CUS group of variables, shorten it up
like this:

C.KEYS
C.PTR%
Be careful however, as this use may conflict with that de-

scribed as ‘Special Application Variables'. Check this section
first.

Key to the customer file
Pointer to the customer file

2.2.2 Special Application Variables

Some variable types have a tendency to appear very often.
File channels and loop indices are good examples. For these, a

one-dot-three variable is used. These are presently assigned:

F.CUS% File channel for file system
using CUS as variable group name
F.CUSS File name for above channel
[.XXX% Loop index variable for group
thru N.XXX% XXX, following the commonly used

1%, J%. etc.

These names are relatively short and have the same protec-
tion against interaction as all application variables. These
names apply to any arrays that may be needed.

The use of F.XXX% and F.XXXS$ is a special case and is cov-
ered in the section relating to file channel definitions.

2.2.3 Temporary Variables

Certain variables are defined as temporary in nature, and
may be used freely, according to their own rules. These varia-
bles are used by the standard routines to save space as well
as indicate the transient quality of their values.

In application code, temporary variables are allowed, but
their use is restricted. Temporary variables are for immediate
use only. In no case may a value be assigned, a subroutine or
function executed, and then that same variable expected to
have the same value. Temps are best suited for intermediate
calculations. They may be used to pass a parameter to another
routine if that routine is called directly. They may also be used
to return a value from a subroutine or function if they are
tested immediately upon return.

Temporary variables are defined as asingle letter, or a letter
and then a single digit (non-extend mode variables). Do not
use zero as the digit. An added bonus is that pre-extend mode
code can be upgraded softly. Temps can take the form of in-
tegers, floating point, strings. and all kinds of arrays. Don't
generate temporary function definitions.

E% is returned by many standard routines as a result of
error trapping. But don't rely on the value of E% unless it is
defined as returned by the routine. Use E% regularly as a re-
turn indicator. This should be the default unless there is some
need for an additional application variable (perhaps the value
is required later).

The following is a list of temporary variables that should be
used before others (to save space). When possible, use these
for their recommended purposes:

DS Displacement place holder for fielding

E% General error return from function or
subroutine call. Positive values indicate
a RSTS error of some kind, while nega-
tive values mean a program defined
error or exception condition.

Fo% Use this to hold a file channel if much
fielding or 1/0 is performed in one
section of code.

1%

thru N%

Z% General temporaries. Use Z% first,
thru Z9% then Z1% thru Z9% in order as needed.

Loop or other index usage

7 General use.
thru Z9

Z$ General use.
thru Z9$

page 42

BELAT ¥ W e B T L s B

5% W

STOP B8 PROTCT :

3. Standard Routines —
Structure and Allocation

All lines 20000 through 32767 in a program are reserved
for standard routines. No application programming may occur
in this area. Line 32767 will always consist of END and nothing
else.

As standard routines are developed and approved, their line
numbers will be allocated as needed. The specific goal is to
eliminate the need for program modifications to standard
code.

READY

November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSI ONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROF! ESSIONALRSTSPROFESSIONALRSTSPROF| ESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

CONTROLLER
SELECT

| UNSAFE

All programs that need some specific standard routine will
always have a spot for it. A routine will work the same way in
every program that includes it, regardless of the programmer.

Some ‘quick’ program designs or enhancements may suffer.
Four options are available. First, the feature in question may
be disregarded. Second, further application programming may
be employed to accomplish the desired result. Third, old stand-
ard routines may evolve to cover the special case. Finally, new
standard routines may be developed.

....to be continued

-

Subscribe now . ..

. .. don’t miss the February/March issue of the RSTS PROFESSIONAL

Fill-out this form and mail to: RSTS PROFESSIONAL, Box 361, Ft. Washington, PA 19054.

LI Please enter my subscription for one year (4 issues) to the RSTS Professional. | have enclosed my check for $20.00.
0 Please send only the next issue of the RSTS Professional. | have enclosed my check for $7.50.

Name

Address

City

State

Zip

Telephone ()

November/December 1979

page 43

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

SHOULD YOU CONSIDER USING MACRO-11 UNDER RSTS/E?

By Richard A. Marino, Data Processing Design, Inc.

This article discusses some of the specific advantages of MACRO-11 as a programming tool under RSTS/E.

IMACRO-11 is the common assembly language for the PDP-11
family of minicomputers produced by Digital. Its use is just now
becoming ‘respectable’ under RSTS/E. Certainly it was possi-
ble under versions 6B and 6C to write programs in MACRO-11,
however, only lately has it been acknowledged that doing so is
acceptable. Version 7 of RSTS/E will finally mean true accept-
ability of MACRO-11, especially in the sense of providing
reasonable documentation in the form of a System Directives
Manual.!

If Version 7 permits all of the MACRO-11 hacks to come out
of hiding, it will also no doubt encourage a wider group of
companies and programmers to give MACRO-11 atry. Insome
ways using assembly language in these days of higher level
languages is almost a religious commitment. Years ago we
were promised that the days of higher level languages were
upon us; though the promise was great, so was the dissension
and dissatisfaction. While it is possible that languages like
Pascal may in fact be a step away from assembly language,
assembly language still offers the mystical attraction of deal-
ing with the hardware directly.

Why use MACRO-117 It offers the advantages of all assem-
bly languages — small in size, fast in execution. Admittedly,
one can write slow and unnecessarily large assembly language
programs (it may even be easier to do so in assembly language).
However, one does have total control over the precise size and
speed of an assembly language program.

Why use MACRO-11 under RSTS/E? If you have been using
BASIC-PLUS, COBOL, DIBOL, or even FORTRAN, you may be in
for a surprise. The good news is you can write small, fast pro-
grams. The bad news is they are a pain to write and debug. It is
not realistic (in 99% of the cases) to have an entire application
system in MACRO-11. What is a reasonable idea is to convert
or write critical software in MACRO-11 for such a system.

RSTS/E with its file sharing and send/receive capabilities
provides one of the best possible environments (short of
virtual memory page sharing) to integrate a MACRO-11 pro-
gram into a software system. As discussed previously in an
article on performance measurement? the correct way to
decide to convert part of an existing system to another lan-
guage is to instrument the software and determine which
parts of the application are using which system resources.

Where should MACRO-11 be used? It is ideal when the appli-
cation would be helped by the following:

a. Smaller program (providing more memory space for buf-

fering, indexes, etc.).

b. Fast execution of integer-arithmetic or simple character

manipulation code.

c. Sharable code (either as run-time systems or resident

libraries3).

MACRO-11 is not necessarily the best answer if one needs
to run copies of the same program from several terminals
simultaneously. First, consider multi-terminal 1/0, a very
powerful RSTS/E feature that can be effectively used in some
applications requiring transaction or inquiry operations from
several terminals. Second, consider using send/receive with

small programs sending requests (in the case of data base
inquiries) to a central and larger program whose task is to
simply handle messages requesting information, read the data
base, and supply information by return message. Finally, con-
sider that the only way to create sharable code is to write a
run-time system (or sharable resident library in Version 7).
While I will not say writing a run-time system is dramatically
more difficult than writing a MACRO-11 program, it is certainly
harder to debug and there is less documentation about how to
do it.

An example of a program that is a natural for MACRO-11isa
disk to tape backup system (SAVER) we developed to replace
RSTS/E BACKUP. Written in MACRO-11 the disk save program
is less than 5 KW of code (versus 16KW of multiple modules
plus 15-16KW of BASIC-PLUS for RSTS/E BACKUP). In addi-
tion, the small program permits the use of memory for large
disk/tape buffers. This is a true performance enhancement
since using 16 x 512 byte buffers improves performance on a
typical system save by reducing the number of disk accesses
by a factor of 10 compared to RSTS/E BACKUP. The additional
memory space (up to 27KWT!) also permits caching of directory
(UFD) information to further speed processing. Implemented
as a run-time system to save the overhead of 2-4KW of the
RSX or RT11 runtime systems and assure full control over
error trapping, this program gains little by being sharable.

Other examples of systems implemented in MACRO-11
include KDSS4, a system providing key-to-disk emulation under
RSTS/E. For efficiency and sharability among numerous ter-
minals, a run-time system is a natural solution. The WORD-11
word processing system Editor, is in the same vein; multiple
users on a small machine necessitates minimum size sharable
code in order to effectively utilize physical memory and user
memory given the RSTS/E 32KW. Compilers and interpreters
are also candidates for MACRO-11 and sharable code given
their usage.

While MACRO-11 has distinct advantages in these and other
instances it is not the answer for number crunching. Unless
you can identify very, very small program segments that are
very frequently executed and you want to reinvent multi-
precision arithmetic in assembly language, a better solution
is a language such as FORTRAN-IV-PLUS (now available under
RSTS/E) which is an excellent and efficient compiler for number-
crunching duties.

One of the by-products of using MACRO-11 is that is is avail-
able on all PDP-11 systems. Other languages offer some
portability across operating systems but there can also be
surprises, and those assuming BASIC-PLUS-Z worked the
same on RSTS/E, RSX, and VAX have discovered. Certainly in
MACRO-11 you lose the independent system calls and 170
offered by a higher level language. However, since Digital
seems to be aiming at making RSX the defacto standard with
such vehicles as the RSTS/E emulator (more fully described in
the Version 7 System Directives Manual) and the VAX Applica-
tion Migration Executive (described in the VAX/VMS docu-
mentation), the portability problem with MACRO-11 programs
is solvable.

page 44

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

Another advantage of MACRO-11 is in product growth. You
may develop an application in BASIC-PLUS, perhaps convert
it to BASIC-PLUS-2, and then at a later time rewrite part of the
application in MACRO-11. In developing a word processing
product for PDP-11 operating systems, my company has taken
Jjust this route. Our first version included only the word proces-
sing Editor in MACRO-11 as a sharable run-time system. The
second release converted the spooling/printing subsystem to
MACRO-11. Our most recent release includes a converted list
processing system, now also in MACRO-11. In both conversions
we first developed the base level product in BASIC-PLUS and
then having reached the size limit of 16KW and experiencing
performance problems, we re-wrote the applications in MACRO-
11 to improve performance, gain room to add additional features,
and provide sharable run-time systems.

In converting programs from BASIC-PLUS to MACRO-11, in
writing complex MACRO-11 run-time systems that includes
thousands of lines of code, and in using and evaluating lan-

Ready

RUN BUBBLE.BAS

guages such as BASIC-PLUS-2 and FORTRAN, we have been
convinced that there is no match for MACRO-11 in size and
speed efficiency. Fortunately with experience and through the
development of programming tools to aid in programming in
MACRO-11, we do not believe the cost of assembly-language
programming outweighs the benefits.

To offer an example of the comparative advantage of
MACRO-11, we chose a relatively simple program to write in
both BASIC-PLUS and MACRO-11. The problem was to take
several strings (totaling some 376 bytes). concentrate them
together and sort the individual characters in order using a
bubble sort. From start to finish the programming and debug-
ging took approximately three hours.

Each program calculates and prints the CPU time in seconds
for the actual bubble sort excluding the input and output of
the strings. A sample run of the two programs is shown below:

"yr=—e.ee.../11AAAABCCEFILMMOPRRSSSSTTUYaaaaaaaaaaaaaaaaabbbbbbbcc
ccdddddddddddeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeffffffgggghhhhhhhhhhhhhhh1

111111111111ijkkllllmmmmnnnnnnnnnNnnNNNNNNNNNNNNO0000000000000000000000PP
PPPPOrIrrrrrrrrrrrrrrrsssssssssssssssstttttttttttttttttttttuuuuuuuuuvvvy

WWWWXYYYYYYYYYZz
Consumed CPU time = 370.9

Ready

RUN BUBBLE.SAV

r=—eeesss./11AAAABCCEFILMMOPRRSSSSTTUYaaaaaaaaaaaaaaaaabbbbbbbcc

ccdddddddddddeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeffffffgggghhhhhhhhhhhhhhh1

PPPPOLLrLrrrrrrrrrrrrrssssssssssssssssttttttttttttettttetttuuuuuuuuuvvvv

WWWWXYYYYYYYYYZz

Consumed CPU time = .8

Ready

As you can see there is a definite difference in CPU time.

This BASIC-PLUS program, however, does not really process
the character string in the most efficient way possible. it uses

RUN BUBBLZ2.BAS

the MID statement to compare individual characters of the
string. We rewrote the BASIC-PLUS program to use a buffer,
fielding, and the LSET statement and received somewhat
better results:

'yr=—¢eee.../11AAAABCCEFILMMOPRRSSSSTTUYaaaaaaaaaaaaaaaaabbbbbbbcc
ccdddddddddddeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeffffffgggghhhhhhhhhhhhhhh1

PPPPOrIrrrrrrrrrrrrrrrsssssssssssssssstttttttttttttttttttttuuuuuuuuuvvvy

WWWWXYYYYYYYYYZZ
Consumed CPU time = 64.1

Ready

November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

The results from the various other runs are shown in the table below:

Yes MACRO-11 is faster. In this instance from 50 to 450 times faster than BASIC-PLUS and BASIC-PLUS-2.

Program

BASIC-PLUS (MIDS)
BASIC-PLUS (LSETS)
BASIC-PLUS-2 (LSET)

(Seconds) Code Data
370.9 47 2.08
64.1 A7 1.30

497 7 7
0.8 21 110

MACRO-11

The original BASIC-PLUS program is shown below:

1000

1010

1020
1030

2000

2010

3000

3010

3020
3030

3040

3050

4000

B$ =llll
! String to be used as

!
! Read the text data to be sorted into the buffer.
!

CL% = 0%

READ AS

GOTO 2000 IF LEN(AS)
B$=BS$+AS

CL$ = CL% + LEN(AS)
GOTO 1030

——

e = b

ST.TIME = TIME (1)

The bubble sort.

CHA% = 0%
! Change flag to false.

FOR I% = 0% TO CL% - 2%

IF MID(BS$,I%$+1%,1%) > MID(BS$,I%+2%,1%) THEN

buffer

= 0%

Total

4.0
3.0
3.0
2.0

+

+
+
%
+

CPU Time ~ Program Size Information (KW) ---

RTS Size

16
16
16
4

Read in the data and insert it into the buffer.
Terminate when a null string is read.

Record the CPU time before starting the sort.

B$=LEFT(B$,I%)+MID(BS,I%+2%,1%)+

\ CHA%

MID(B$,I%+1%,1%)+RIGHT(BS$,I%+3%)

= -1%

page 45

If the two bytes are in the wrong order, then switch them and

!
! set the change flag.
NEXT I%

IF CHA% THEN GOTO 3010
! If anything changed,

do it all again.

Record the CPU time afterwards.

page 46 November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

4010 END.TIME = TIME(1%)

5000
Print out the sorted string and the consumed CPU time.

G e §e

5010 PRINT BS
5020 PRINT
\ PRINT 'Consumed CPU time ='; (END.TIME - ST.TIME) / 10.

6000 !
! The data to be sorted.
!
6010 DATA "Four score and seven years ago, our forefathers set ",
"foot upon this land. "
"The quick brown fox jumped over the lazy dog. ",

"RSTS/E is the best operating system around. .
"A penny saved is a penny earned. "

"A bird in the hand is worth two in the bush. ",

"Many things may be done more effeciently in MACRO-11 ",
"than in BASIC-PLUS. ",

"You don't have to be crazy to work here, but it helps.

6990 DATA e

32767 END

The version using LSETS and fielding required the following lines to be changed:

1000 OPEN 'NL:' AS FILE 5%, RECORD SIZE 380%
! This buffer will be used to hold the data during the sort.

1020 CL% = 0%

1030 READ AS

GOTO 2000 IF LEN(AS) = 0%

FIELD #5%, CL% AS X$, LEN(AS$) AS XS$

LSET X$ = AS

CL% = CL% + LEN(AS)

GOTO 1030

Read in the data and insert it into the buffer.
Terminate when a null string is read.

L=l oY S P S® P o

3020 FOR I% = 0% TO CL% - 2%
\ FIELD #5%, I% AS X$, 1% AS Cl1l$, 1% AS C2$
I Field in for the current two characters.

3030 IF C1$ > C2$ THEN
SW$ = Cls + ""
\ LSET Cl1% = C2%§
\ LSET C2% = SWS$

\ CHA% = -1%
! If the two bytes are in the wrong order, then switch them and
! set the change flag.

5010 FIELD #5%, CL% AS AS
\ PRINT AS$

November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

Finally, here is the MACRO-11 program.

START::

1s:

2S:

3$:

.TITLE Bubble sort example under

.ENABL AMA,LC

R0=%0
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

+MCALL .TTYOUT

.MACRO .TIME

EMT 377
EMT 30

. ENDM

.MACRO .EXIT
EMT 3717
EMT 46

. ENDM

XRB=442

.CSECT BUBBLE

MOV #TOS, SP

; Move the text to be sorted into

MOV #LENGTH, RO
MOVB TEXT-1(R0) ,BUFFER-1(RO0)
SOB RO,1$

°
14
°

7

. TIME

MOV XRB+10,CPUHI
MOV XRB+0,CPULO
; The bubble sort.
CLR CHA

CLR RO

CMPB BUFFER(R0) ,BUFFER+1 (RO)

<o

e wo

~e we wo W

~e weo ws wo

~e wo

e o

L]
14

~e

we wo

page 47

MACRO-11.

Name the registers.

Get this macro from the RT-11 macro
library.

Define this RSTS monitor call

This causes the call to go directly
to RSTS.

Get time information.

Define this RSTS monitor call

This causes the call to go directly
to RSTS.

Exit program.

Define the RSTS "Transfer Request
Block".

: Set up the stack pointer.

the buffer.

Move a byte.
Loop back for the next.

Record the CPU time before starting the sort.

Call to get time information.

Change flag to false.

Top of the loop.
Compare two bytes.

page 48

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALHSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

48

58

6S:

78:

BLOS

MOVB
MOVB
MOVB
MOV

INC
CMP
BLOS

TST
BNE

43

BUFFER(RO) ,R1
BUFFER+1 (RO) ,BUFFER(RO)
Rl ,BUFFER+1 (RO)

#_1 r CHA

RO
RO, #LENGTH-2
38

CHA
28

r

e

~e

~e weo

i Record the cpu time afterwords.

i
.TIME
MOV
MOV

Print

i
i
CLR

. TTYOUT
INC
CMP
BLOS

Print

Q) ~e ~o

LR
. TTYOUT
INC

CMP
BLOS

XRB+10,ENDHI
XRB+0 ,ENDLO

out the sorted string.

R1

BUFFER(R1)

R1
R1, #LENGTH-1
58

out the consumed cpu time.

R1
MESSAG (R1)
Rl

Rl , #MESLEN-1
6%

.
4

e

Ne we wo wo

.
4

Wrong order, swap the two bytes.

And set the change flag.
Advance the loop counter.
And maybe loop back to the top.

Did anything change?
Yes— do it all again.

Call to get time information.

Top of the loop.
Note: this is a monitor call to
the RT11 emulator.

Back for another character.

First the text.

Top of the loop.

Note: this is a monitor call to
the RT11 emulator.

Back for another character.

i Convert the CPU time to a string of ASCII digits.

7

SUB
SBC
SUB

MOV
MOV
CLR
DIV
ADD
MOVB

MOV
BNE

CPULO, ENDLO
ENDHI
CPUHI, ENDHI

ENDLO,R1
#BUFFER+20,R3
RO

#10.,R0
#'0,R1

RO,R1
7%

~e

~e “wo wo ~e

~e

Get the difference.

Output pointer.

Divide out a digit.
Make the remainder an ASCII digit.
And put it in the buffer.

If any digits left, loop back.

November/December 1979

page 49

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

MOVB

MOVB

BUFFER+17 ,BUFFER+20 ; Insert the

#'.,BUFFER+17

; And print the digits.

decimal point.

7

8%: .TTYOUT (R3)+ ; Output the digit.
CMP R3, #BUFFER+20
BLOS 8% ; Loop back for another.
L.TTYOUT #15 ; Carriage-return, line-feed.
.TTYOUT #12
; Exit the program.
i
EMT 377 : This is a RSTS monitor call.
.EXIT
; Text to be sorted.

TEXT:: .ASCII "Four score and seven years ago, our forefathers set "
.ASCII "foot upon this land. "
.ASCII "The quick brown fox jumped over the lazy dog. "
_ASCII "RSTS/E is the best operating system around. "
.ASCII "A penny saved is a penny earned. "
_ASCII "A bird in the hand is worth two in the bush. "
.ASCII "Many things may be done more effeciently in MACRO-11 "
.ASCII "than in BASIC-PLUS. "
_ASCII "You don't have to be crazy to work here, but it helps.

LENGTH=.-TEXT

Constant data.

20 we o

MESSAG:
MESLEN=.-MESSAG

variables and buffers.

¢ we we

BUFFER:: .BLKB 512.

. EVEN
CPUHI:: «BLKW
CPULO:: « BLKW
ENDHI:: . BLKW
ENDLO: : « BLKW
CHA:: - BLKW

; The stack.

7

« BLKW 100.
TOS: : « BLKW

. END START

This MACRO-11 program utilizes the RT11 run-time system.
In particular the TTYOUT macro is used to output a character
to the terminal. The other common reference used in this pro-
gram is the EMT. This is used to access a RSTS/E Monitor
Directive (a monitor call). A more detailed discussion of the
EMT instruction appears in the various PDP-11 Processor

JASCII <15><12><15><12>"Consumed

CPU time = "

Working buffer for the sort.
Make sure we are at an even addr.

~e weo

Handbooks while the Monitor Directives are described in the
Version 7 System Directives Manual.

MACRO-11 is an alternative. Before using it consider other
alternatives, consider the problems, and consider the costs.
However, MACRO-11 can make some tasks which would be un-
acceptable in BASIC-PLUS acceptable. An example is the

page 50

November/December 1979

RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIO NALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

dynamic priority allocation program (DYNPRI) which is used
in various forms at many RSTS/E sites. Using significant CPU
time in BASIC-PLUS and thereby using system resources it is
trying to better allocate, the program is somewhat ineffective.
The same program when rewritten in MACRO-11 can do more
and use almost no appreciable CPU time even when running at
very frequent intervals.

In your environment you may find parts of software systems
that could similarly benefit from the advantages of MACRO-11.
In most situations there is a heavily utilized software system,
some part of which if carefully converted to MACRO-11 would
improve the performance of the entire application or system.
You should consider MACRO-11, but consider it with care.

References

'RSTS/E Version 7 System Directives Manual, May, 1979.

Z"Performance Evaluation”, RSTS-11 SIG Newsletter, May,
1978, Vol. 5, No. 3. This paper also has appeared in the CANA-
DIAN DECUS Symposium Proceedings.

3Resident Libraries are a new feature of Version 7 of RSTS/E
and provide the capability to have memory resident regions

of sharable code or data that can be mapped by individual jobs
into their own memory space.

4KDSS is a product of Evans, Griffith and Hart, Lexington, MA.
It is discussed briefly in a paper presented at the Fall, 1978
DECUS Conference.

SWORD-11 is a product of Data Processing Design, Inc.

November/December 1979 page 51
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPRDFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

Acknowledgements

I'd like to acknowledge the help of Ted Marshall who helped
write the sample programs presented in this article.

The Author

Richard Marino is Vice President of Data Processing Design, Inc.,
a systems and software house in Placentia, California. DPD special-
izes in developing high technology software for RSTS/E and other
PDP-11 operating systems. Richard has presented several papers
at DECUS conferences in both the United States and Canada and
has authored several articles on software development and sys-
tem performance analysis. In addition to managing software
development at DPD, Richard provides system measurement and
performance consulting to RSTS/E sites.

page 52 November/December 1979
RSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSIONALRSTSPROFESSION

START WAITE COMTROL
ROTEC A

COMTROL
5

.. E080080 rpos

OurWildest Card Yet

A programmable 16-line multiplexer that
beats everything in its class*

PDP-11 users, we have another winner for you.
This time it’s DMAX/16", our new
programmable multiplexer for con-

necting your PDP-11 to 16
asynchronous serial communi-
cations lines. DMAX /16

makes the most of the 11’s
DMA capabilities to estab-
lish computer overhead at a

level far below that of compet-
itive units like the DJ11 and
DZ11. It also offers software
compatibility with the DH11. ..
in one-fourth the space!

Now, for the first time, you
don’t need an expansion
‘box or special back
planes. DMAX/16
consists of two hex
boards which in-
stall easily into
standard SPC slots
~ and connect to the
current loop or EIA/RS-
232 panel by separate flat-
ribbon cable. As many as 16
_units can be placed on a single
- PDP-11 for a total of up to 266
lines. A DMUX/16" option allows
 modem control for 16 channels.
DMAX/16 provides complete pro-
~gram control of the lines, each of which
~operates with several individually
programmable parameters, such as char-
acter length and number of stop bits. Parity
generation and detection are odd, even or none.
~ The operating mode is half duplex or full duplex.
Flfteen software programmable baud rates: 0 to 9600 baud—
- plus 19,200 baud — and an external baud rate. Breaks may be
generated or detected on each line and the unit can echo received
characters without software intervention.

Play the wild card now. You'll get top performance and a competitive
prme advantage of at least $1000 along with dehvery from stock as usual
Wnte for details and find out why we
_consider ourselves the leader among
manufacturers of DEC enhancements.
' Able Computer Technology, Incorporated,
1751 Langley Avenue, Irvine, California 92714.
(714) 979-7030. TWX 910-595-1729

Able, the computer experts

DEC and PDP-11 are registered trademarks
' of Digital Eqummt.nt Corporation.

" *You w:II save half your bandwxdth or run at twice the speed' Able does it agamf

® PDP-II: ‘
e Mulli-termingi

WORD-11 is proven word processing
power. Power responding to your needs. |
Designed to run on Digital’s family of |/ [

PDP-11 minicomputers, WORD-11 sup- | \ @ /

|

ports up to 50 inexpensive VT52 or VT100
terminals and uses a wide range of high
speed and letter quality printers.

e Concurrent data
processing

e Low cost

nal cost of WORD-11 is much lower than
similar systems. Whether as an addition to
\ your current system or as a dedicated word
) processing system, the cost of WORD-11 is
agreeably low. DPD can also provide
accounting and utility software for your

RSTS/E System. Call or write for infor-

WORD-I11 is productivity. And mation on our software or for details on
efficiency. By running concurrently WORD' turnkey systems. Ask for our free bro-

with data processing, WORD-11

enhances the overall effectiveness of your system.
And WORD-11 is a variety of useful and

unique features. Such as the multiple dictionary

capability that detects and highlights spelling errors.
WORD-I1 is also inexpensive. The per termi-

chure, today.
Data Processing Design, Inc., 181 W. Orange-
thorpe Ave., Suite F, Placentia, CA 92670, (714)

e Data Processing Design, Inc.
Specialists in Digital Equipment
sales and software applications.

PDP-11, and RSTS/E are trademarks of Digital Equipment Corp., Maynard, MA.

